

SANTEDB / SANTESUITE
Software Requirements & Design Specification

Justin Fyfe et al.
justin@fyfesoftware.ca

Abstract
SanteSuite is a comprehensive, interoperable health systems software platform built on

top of the powerful SanteDB iCDR. It provides all functions required to fully realize a
patient-centered digital-health ecosystem.

SanteDB/SanteSuite Design 1

1. Document Information
1.1.1. Revision History

Name Date Reason Version

Justin Fyfe & Duane
Bender (Mohawk
College)

Dec 21, 2015 Initial Version 0.1

Justin Fyfe (Mohawk
College)

February 1, 2016 Includes IMSI, changes
to data model, and
additional detail on the
software interfaces
from architectural
spikes.

0.2

Justin Fyfe (Mohawk
College)

April 28, 2016 Includes numerous
implementation
changes for the AMI,
IMSI, and RISI.

0.3

Justin Fyfe (Mohawk
College)

July 30, 2016 Include enhancements
to the IMSI and FHIR
sections better
document the way that
the OpenIZ IMS
functions.

0.4

Justin Fyfe (Mohawk
College)

October 24, 2016 Updated
documentation to
match the
implementation with
input from TIMR

0.5

Justin Fyfe (Mohawk
College)

November 1, 2016 Updated
documentation to
include templates.

0.5.5

Justin Fyfe (Mohawk
College)

November 20, 2016 Updated to include new
instructions on AMI and
IMS interfaces

0.6

Justin Fyfe (Mohawk
College)

January 26, 2017 Updated design section
to include PostgreSQL
design specification

0.7

Justin Fyfe (Mohawk
College)

March 9, 2017 Updated the design of
the business rules
engine.

0.7.5

Justin Fyfe (Fyfe
Software Inc.)

2018-08-01 Initial fork from OpenIZ
documentation.

1.0

Justin Fyfe (Fyfe
Software Inc)

2018-11-25 Added and updated the
security section and
refactored more OpenIZ
references to be more

1.1

SanteDB/SanteSuite Design 2

accurate after the code
refactor.

Justin Fyfe (Fyfe
Software Inc.)

2019-04-30 Added new sections for
the ADO.NET providers.

1.2

1.2. Related Documents
Related Document Relevance

OpenIZ Design Specification
(http://openiz.org/artifacts/1.0/OpenIZ%20-
%20Design.pdf)

Basis of this document

1.3. License
The SanteSuite platform is licensed under the terms of the Apache 2.0 license. This document’s contents

are licensed under CC-BY-SA 4.0.

Portions Copyright © 2015-2019 Mohawk College of Applied Arts and Technology.

Portions Copyright © 2018-2019 SanteSuite Contributors (listed in section 1.1.1).

For more information related to the licensing of SanteSuite and SanteDB projects see

https://github.com/santedb/santedb/blob/master/NOTICE.md

http://openiz.org/artifacts/1.0/OpenIZ%20-%20Design.pdf
http://openiz.org/artifacts/1.0/OpenIZ%20-%20Design.pdf
https://github.com/santedb/santedb/blob/master/NOTICE.md

SanteDB/SanteSuite Design 3

2. Contents
1. Document Information .. 1

1.1.1. Revision History .. 1

1.2. Related Documents .. 2

1.3. License ... 2

2. Contents .. 3

3. Introduction .. 6

3.1. Purpose.. 6

3.2. Project Scope ... 6

3.3. About The Clients ... 7

3.4. Team Members .. 7

4. Overall Description .. 8

4.1. Alternative Products .. 8

4.1.1. SanteDB Alternatives .. 8

4.1.2. SanteMPI Alternatives .. 8

4.1.3. SanteEMR ... 9

4.2. Project Principles ... 9

4.3. Project Features / Deliverables ... 10

4.4. User Classes and Characteristics ... 10

4.4.1. Clinical Staff .. 11

4.4.2. Receptionist ... 11

4.4.3. Clinic Manager ... 12

4.4.4. Regional Manager .. 12

4.4.5. System Administrator ... 13

4.4.6. Governing Authority / National Officers .. 14

4.4.7. Audit / Privacy Officers ... 14

4.4.8. Application Developer / Implementer / Technical Expert .. 15

4.4.9. Patient ... 15

4.5. HDS Platform ... 16

4.6. Web Portal Operating Environment ... 16

4.7. Mobile App Operating Environment ... 16

4.8. Assumptions and Dependencies ... 16

5. Requirements .. 17

SanteDB/SanteSuite Design 4

5.1. User Stories / Use Cases ... 17

5.1.1. User Logs In With Valid Credentials .. 17

5.1.2. User Logs In With Invalid Credentials .. 17

5.1.3. User Resets their Password .. 17

5.1.4. User Reviews Appointments ... 17

5.1.5. User checks-in existing Patient ... 17

5.1.6. User copies remote demographics into the system ... 17

5.1.7. User registers a new Patient ... 18

5.1.8. Patient presents and is past due / has no appointment .. 18

5.1.9. Patient presents and provides new demographics .. 18

5.1.10. Clinical Staff performs encounter ... 18

5.1.11. Patient has an adverse reaction after encounter... 19

5.1.12. National officer enables a new application ... 19

5.1.13. District / Regional / National Officer runs summary reporting ... 19

5.2. Other Non-Functional Requirements .. 19

5.2.1. Performance Requirements .. 19

5.2.2. Safety Requirements .. 19

5.2.3. Security Requirements ... 20

5.2.4. Quality Assurance Requirements .. 20

6. Interface Considerations .. 21

6.1. User Interfaces ... 21

6.2. Software Interfaces .. 21

6.3. Communications Interfaces .. 21

7. Solutions Architecture ... 23

7.1. Solution Architecture ... 23

7.1.1. SanteDB / SanteSuite Pre-Packaged Solutions .. 24

7.2. Network / Physical Architecture ... 24

7.2.1. Single Server Deployment ... 25

7.2.2. Multi-Server Deployment ... 25

7.3. Software Architecture .. 27

7.3.1. SanteDB’s Clinical Data Repository Architecture ... 27

7.3.2. SanteDB’s Administration & Configuration Architecture ... 47

7.3.3. Disconnected Client Architecture ... 52

SanteDB/SanteSuite Design 5

7.4. Communications / Interoperability Architecture .. 54

7.4.1. Communicating with the HDS ... 55

7.4.2. Immunization Management Service Interface (HDSI) .. 55

7.4.3. Report Integration Services Interface(RISI) ... 91

7.4.4. HL7 FHIR ... 93

8. Data Architecture .. 96

8.1. Conceptual Data Model .. 96

8.1.1. Clinical Domain ... 96

8.2. Logical Data Design .. 103

8.2.1. Design Notes .. 103

8.2.2. Storage Patterns ... 105

8.2.3. Entity Relationships .. 107

8.2.4. SanteDB Concept Model ... 112

8.2.5. SanteDB Act Model... 121

8.2.6. SanteDB Security Model ... 129

8.2.7. SanteDB Stock Model ... 137

8.2.8. SanteDB Entity Model ... 137

8.2.9. SanteDB Protocol Model .. 153

8.3. Physical Data Design .. 157

8.3.1. ADO Providers .. 157

8.3.2. Patching / Changing Data Schema .. 158

8.3.3. Data Schema .. 159

8.4. Business Data Model .. 168

8.4.1. Business Data Model Queries ... 169

8.4.2. Foundational Classes .. 169

8.4.3. Security Classes .. 171

8.4.4. Data Types ... 171

8.4.5. Acts .. 172

8.4.6. Entities ... 173

8.5. Pre-Configured Data Reference .. 174

8.5.1. Object Identifier (OID) Reference.. 175

SanteDB/SanteSuite Design 6

3. Introduction

3.1. Purpose
The SanteSuite platform (http://santesuite.com) represents a comprehensive and cohesive software

platform for realizing patient-centered digital health ecosystems. Built atop the powerful SanteDB

platform, SanteSuite components are designed from the ground-up to interoperate with each other and

with other software systems.

The platform provides a generic launchpad from which individual states or jurisdictions can design and

customize their own software solutions that suit their use cases. However, SanteSuite also provides

useful out of the box functionality that makes deployment faster and easier.

SanteDB uses an extensible, open architecture which allows for the addition of features such as

materials management, analytics, authentication, outbreak management, internet of things, reporting &

national data submissions, and much more.

Through this design and the implementation of plugins, it is envisioned that countries can select a

package of features which work to achieve an appropriate solution for their environment. For example,

a country may select a custom immunization forecasting logic module with a stock management module

to support the query of immunizations and stock management capability.

3.2. Project Scope
The scope of SanteSuite is quite large, it is comprised of several platform components which further

specialize the SanteDB core to perform a necessary function within a digital health ecosystem. At a high

level, the components of SanteSuite are:

1. SanteDB – An extensible intelligent Clinical Data Repository (iCDR). SanteDB’s core SDK and

server infrastructure provides the necessary functions to match records, make clinical decisions,

execute business rules, store and retrieve clinical data, perform security audits and privacy

controls, operate on mobile and laptop devices offline, synchronize and resolve conflicts.

2. SanteMPI – A powerful master patient index software which leverages SanteDB’s matching and

MDM plugins to implement the features necessary to operate an MPI. SanteMPI provides the

backbone of a master patient index and includes a series of plugins, configurations, and applets

required to operate SanteDB “as a” MPI.

3. SanteEMR – The EMR project represents an enhancement to the SanteDB experience. It extends

the SanteDB core user experience and makes it more generic and easier to implement custom

primary care forms and templates.

4. SanteInsight – The insights tool provides a de-identified data stream to a standardized data

warehouse copy of SanteDB. This allows donors and ministries of health to get real-time, de-

identified, patient level reports for analysis.

5. SanteGuard – The guardian tool provides a complete audit repository solution for any

connected SanteSuite product or any other product that uses IETF RFC3881, DICOM or FHIR

audits.

6. SanteGrid – The grid solution allow for easy federation and peer-to-peer communication

between SanteDB instances. SanteGrid provides a centralized table of contents for health data

amongst connected peers and allows any connected SanteDB instance to query that index for

patient information.

http://santesuite.com/

SanteDB/SanteSuite Design 7

3.3. About The Clients
SanteSuite is a community initiative that will, potentially, produce a multitude of clients. The basis for

the requirements used for the design of SanteSuite are a collection of those specified as part of projects

that have been conducted around the world. This section will describe the general characteristics of

such an environment.

 The expected clients of this software range from low-to-medium income countries (LMIC) to individual

states and provinces in developed countries. This broad base poses a variety of unique challenges. One

of the primary challenges of public health professionals working in the field is that of reliable network

connectivity and power. The solution shall take into account that feature-rich electronic devices may not

be a viable solution and paper based or SMS based interfaces may be used as input into the system. This

is true of LMIC but is also true of rural and indigenous regions in developed countries as well.

Furthermore, it is expected that the solution should be able to run on low powered, low cost hardware

and server infrastructure. Great care shall be taken during the development and design stages of this

project to ensure that optimal performance can be achieved on relatively low powered, low cost

machines to achieve the widest possible adoption.

There can also be a severe shortage of “receptor capacity” or a capability on the part of implementing

countries to deploy, manage and support these systems. Great care shall be taken in the documentation

of the infrastructure, plugin architecture and installation procedures for the service. Where possible, it

should be assumed that working knowledge of the underlying technical details is scarce. Multiple

deployment options are also supported, including cloud options for greatest reach and custom local

deployments where required to meet local legislative or other requirements.

3.4. Team Members
Being a community project, we seek to engage general partners where possible online. Upon

commencement the team shall consist of the following members:

Table 1 - Team Members

Name Role Organization

Justin Fyfe Architect / Lead Developer Fyfe Software Inc.

Joseph Dal-Molin Product Design & Evangelism e-Cology Corp.

Paul Brown Product Owner & Community
Lead

Mohawk College

Nityan Khanna Development Mohawk College

SanteDB/SanteSuite Design 8

4. Overall Description
This section provides a high level description of the system.

4.1. Alternative Products
Because the breadth of the SanteSuite product offerings, there are a multitude of alternative products.

We believe that SanteSuite products should, at minimum, match the capabilities of these products and

exceed them.

4.1.1. SanteDB Alternatives
SanteDB is an iCDR, this means that many regular CDR software products are alternative products. Two

major alternatives have been identified:

• SmileCDR – An initiative which provides a fully functional FHIR CDR. SmileCDR offers features

similar to SanteDB.

• HEARTH – An initiative from JEMBI health systems, which provides an open source FHIR CDR.

We feel that SanteDB offers several key advantages over these alternatives, namely:

• SanteDB does not use FHIR or any other messaging format as its storage format, it uses a more

flexible clinical information model. Therefore SanteDB is insulated from changes to the FHIR

standard or any other standard.

• SanteDB “speaks” standards other than FHIR. We have to be realistic, while FHIR has great

potential in new developments, many environments are brownfield, meaning there are a

multitude of systems which already leverage HL7v2, HL7v3, CDA, XDS, and other messaging

formats. Rather than forcing these trading partners to upgrade to FHIR, we can interoperate

with them on the CDR side.

• SanteDB provides insights and clinical decision support right out of the box. While other CDRs

can be “hooked up” to a CDSS solution, there are several issues with this including “complete

picture”. A CDR may not wish to disclose that a patient has HIV, however a good CDSS system

needs this information to make a determination of which vaccinations to suggest to a clinician.

By integrating CDSS into the SanteDB platform, we allow the CDSS to make decisions based on

the complete picture of the patient.

• SanteDB provides offline synchronization right out of the box. That is right, SanteDB’s client SDK

provides offline synchronization without the need for designing one from scratch. Developers

simply implement their desired user interfaces in HTML5 and JavaScript and SanteDB takes care

of the rest.

• SanteDB is multi-platform. We don’t mean just “runs on Linux and Windows”, we mean runs on

Linux, Windows, MacOS, Android, Raspberry Pi, etc. Not only that but the platform can be

customized to run on PostgreSQL, Oracle, FirebirdSQL, or SQLite. This allows maximum flexibility

in adapting SanteDB to your licensing model and ecosystem.

4.1.2. SanteMPI Alternatives
Being a Master Patient Index, SanteMPI has a multitude of alternate products. Many are commercial

offerings (such as Tiani, and Initiate), however this analysis will focus on just the open source or free

alternatives.

SanteDB/SanteSuite Design 9

• OpenEMPI – Which provides enhanced MPI functionality including graph based matching,

multiple standards support and MDM functionality.

• MEDIC CR – The previous version of SanteMPI. This MPI provides only basic matching and

storage of patient attributes, however has excellent standard support.

With SanteMPI, the major goals of the solution are to enhance the matching algorithms and incorporate

machine learning algorithms such that SanteMPI provides a “better MEDIC CR”. Included features to be

targeted:

• SanteMPI must have an easy to use patient duplicate resolution user interface. That is to say,

finding, resolving and marking duplicates should be made easy.

• SanteMPI must have a flexible matching algorithm / engine (based on SanteMatch) which

applies the best practice record linkage strategies outlined here:

https://www.ncbi.nlm.nih.gov/books/NBK253312/#

• SanteMPI must incorporate machine learning to “get better” at matching.

4.1.3. SanteEMR
SanteEMR has several open source and commercial alternatives. Some alternatives to SanteEMR are:

• OSCAR – Developed by McMaster University. While OSCAR pioneered many concepts of an

EMR, its development has seemed to slow and the screens and user experience has become

dated. Also, the solution is highly tailored to the Canadian market.

• OpenMRS – Developed by Regenstreif, OpenMRS is a world leader in terms of deployments of

disease based forms.

• OpenEHR –

SanteEMR has several key advantages over the listed alternatives:

• It does not require any internet connection to function out of the box. Whereas OpenMRS

requires specialized modules to perform individual functions offline, all of SanteEMR’s functions

can be performed offline without any changes to the underlying platform..

• SanteEMR synchronizes all business rules, clinical protocols, data, and schedules across server

and client interfaces. This means that any new business rules, protocols, or data is automatically

sent and executed by the connected clients.

• SanteEMR, being based on SanteDB’s iCDR technology is capable of master data management

functions (MDM) in which multiple sources of data can be maintained and aggregated to “one

source of truth”

• The alternative products do not lay down a comprehensive, detailed security audit trail.

SanteEMR supports detailed auditing of all user activities and these audits are shipped to the

central audit repository for further analysis.

• SanteEMR support record level privacy controls and break-the-glass functionality. This

functionality is supported via SanteDB’s integrated IdP.

4.2. Project Principles
At a high level, this project seeks to:

- Provide developer extensibility and configuration points in all aspects of the service core,

https://www.ncbi.nlm.nih.gov/books/NBK253312/

SanteDB/SanteSuite Design 10

- Provide extensive documentation for developers and users,

- Provide a disciplined approach for quality assurance, including the requirement of unit testing

services on all modules in the project,

- Promote of code-reuse and standards wherever possible as integration points,

- Provide heavily normalized data model where journaling is a first class citizen and not an

afterthought,

- Apply Security by design and privacy by design principles.

4.3. Project Features / Deliverables
As stated prior, the SanteDB project seeks to provide a series of highly customizable components into a

series of deliverables that will be used as the basis for implementation. Envisioned as deliverables are:

1. iCDR Backbone: An extensible software solution that contains the majority of “online” logic

required to perform immunizations, track and merge events from remote sites, perform stock

management functions, etc.

2. Administrative Portal: A website that can be used by administrators to maintain the backbone

configuration including customization of reports, stock items, antigens, etc.

3. Disconnected Client Mobile App: A mobile application that can operate offline for long periods

and be used to collect immunization data within a clinic.

4. Disconnected Client Desktop App: A desktop based application which can operate in

disconnected mode for long periods of time and be used to collect immunization data within a

clinic.

5. Disconnected Server: A miniature server which is capable of servicing larger clinics which have a

LAN connection but lack a WAN connection.

6. Web App: An application which allows online access over the internet.

7. Developer SDK: A development toolkit which will permit developers to create their own

applications.

The need to customize edge devices speaks to one founding principle of the SanteDB project that is

extensibility.

4.4. User Classes and Characteristics
This section will seek to introduce the user classes. A user class is not necessarily a technical role nor is it

a single person, rather, it is a mechanism used to consider how a particular role is expected to interact

with the system. A user class will have a series of skills, duties and concerns that will be addressed.

Table 2 - User Classes and Characteristics

User Class Classifier Priority

Clinic Staff Low technical skill, expertise in delivery of health services. VH

Receptionist Low technical skill M

Clinic Manager Low technical skill, expertise in gathering statistics and
managing stock.

H

Regional Manager Low technical skill, expertise in gathering statistics and
managing stock.

M

System Administrator High technical skill, expertise in systems management. M

Governing Authority Medium technical skill, expertise in funding and strategy. M

SanteDB/SanteSuite Design 11

Audit / Privacy Officer Medium technical skill, expertise in privacy legislation. M

Application Developer High technical, expertise in creating new extensions. M

Patient Technical skill unknown, expertise in adhering to appointments M

4.4.1. Clinical Staff
The clinical staff user class is defined as an individual whom performs health delivery tasks at local clinics

and is responsible for clinical observation (such as adverse reactions, weight, etc.).

4.4.1.1. Skills

The clinical staff within a clinic is typically quite capable of performing duties related to health delivery.

The staff member will typically have moderate to low technical skill and is expected to be able to use a

simple user interface to enter simple fields like date/time of an action and the result of their action (for

example, date/time of immunization and the result or date/time of weight and the measure).

4.4.1.2. Duties

The clinic staff is often busy and the use of the application is often a tertiary duty. It is important that

the clinical staff not be distracted from the primary duties of ensuring healthy patient population.

4.4.1.3. Concerns

The clinical staff may have many concerns with the technical solution, including:

- Time, the application must not introduce a bottleneck in the process of caring for patients.

- Accuracy, the application must provide an accurate depiction of the patient’s medical status

including weight, history of medical status, and correct demographics.

- Confidentiality, the application must provide a mechanism that ensures vital information such as

immune compromised is shown the officer but not shown to other generic users

4.4.2. Receptionist
The receptionist user class represents an individual who is responsible for preparing the visit by

performing tasks such as demographics collection/updates, scheduling of future appointments, etc. The

receptionist may be the same person as the clinical staff in some low resource settings, or may be a

separate person representing the clinic.

4.4.2.1. Skills

The receptionist is expected to have lower technical skill than the clinical staff, however be adept at

using simple technology such as filling in form fields, reading a calendar and following recommendations

presented.

4.4.2.2. Duties

The receptionist’s primary duties include:

- Onboarding new patients that arrive at a service delivery location, or updating existing patient

demographics at presentation

- Ensuring identification is accurate and up to date, including immunization cards and/or health

insurance information

- Notifying the clinical staff that the patient has arrived, or placing the patient into the clinic’s

“waiting room”, confirming with the patient the purpose of the encounter.

SanteDB/SanteSuite Design 12

4.4.2.3. Concerns

The receptionist many concerns with the technical solution, including:

- Time: the application must not introduce a bottleneck in the process of queuing patients.

- Difficulty: the application must not be difficult to use and/or present confusing dialogues or

options to the receptionist.

- Accuracy: the application must provide validation that ensures that the keystroking of the

receptionist does not cause a faulty record.

4.4.3. Clinic Manager
A clinic manager user class represents an individual who is responsible with the operation of a single

clinic and ensures that the clinic has sufficient stock perform daily functions, running reports to ensure

adherence, etc.. The clinic manager is also responsible for the transfer of stock to/from a regional

distributor, managing the clinics stock balance and ensuring that any technology used within the clinic is

not operating in an error state.

4.4.3.1. Skills

The clinic manager is expected to have higher technical skill than the clinical staff does, and should be

adept at stock counting, basic math (such as converting vials into doses) and reporting.

4.4.3.2. Duties

The clinic manager’s primary duties include:

- Performing stock counts at set intervals and reporting current stock to a regional authority.

- Ordering and receiving stock into the facility and returning expired/unusable stock to another

authority.

- Ensuring that any technology used in the clinic is operating in a non-faulted state and that any

technology is ready for patient care duties (charged and functional).

- Preparing/running reports which relate to the operation of the clinic such as stock forecasts

(days of remaining stock), number of patients seen, number of outstanding technical issues

(failures, etc.), number of patients expected in the coming days, etc.

4.4.3.3. Concerns

The clinic manager may have concerns with the technical solution, including:

- Accuracy: The solution must provide accurate information (as is possible) related to the current

stock and function of the clinic such as patient population, forecasted patients and consumption

of stock, etc.

- Communication: The solution must provide a mechanism for ordering stock in a manner that the

manager can see the status of their order can place additional orders, and view balances.

- Security: The solution must provide a secure access layer that prevents unauthorized access to

lost/stolen tablets and must ensure the clinic manager does not view information they are not

permitted to view.

4.4.4. Regional Manager
A regional manager is an individual who is responsible for the management of a collection of clinics

within a specific region such as district, county, city, province, etc. The regional manager is responsible

SanteDB/SanteSuite Design 13

for ensuring sufficient stock is available for the clinics in their region, and ensuring that care coverage

meets specified targets.

4.4.4.1. Skills

A regional manager may be of moderate technical skill and, it is expected, should be able to interpret

reports and manipulate data within a basic tool like excel, print reports and scan.

4.4.4.2. Duties

The regional manager’s primary duties include:

- Organizing stock orders, packing them for subordinate facilities and delivering or facilitating

pick-up of the orders.

- Running reports for their district/region and adjusting stock, vaccination campaigns, or outreach

programmes.

- Reporting to higher echelons of administration the performance of their region.

- Ordering stock from national distributors of vaccine and ensuring sufficient safety stock to

supply their region.

- Device provisioning including onboarding of new users and devices for use within their region

and ensuring lost devices are purged/located and user accounts locked under correct conditions.

4.4.4.3. Concerns

The regional manager may have concerns with the technical solution, including:

- Accuracy: The solution must provide accurate information (as is possible) related to the current

stock and function of clinics such as patients seen, forecasted patients and consumption of

stock, etc.

- Communication: The solution must provide a mechanism for relaying status of a stock order in a

manner that the manager can see the status of their order, can place additional orders, and

view balances, pick stock from their current store, etc.

- Security: The solution must provide a secure access layer that prevents unauthorized access to

lost/stolen tablets and must ensure the regional manager does not view information they are

not permitted to view such as discrete data.

4.4.5. System Administrator
A system administrator is an individual who is responsible for the planning, setup and maintenance of

the solution.

4.4.5.1. Skills

The system administrator is typically a highly skilled individual who is responsible for the maintenance of

several software systems within a region/district/country. The administrator in some LMIC may have

less technical skill but still be familiar with basic database terminology, practices, etc.

4.4.5.2. Duties

The system administrator’s duties include:

- Backup of computer databases which contain PHI

- Maintenance of security accounts, and devices permitted to log in within a particular region.

SanteDB/SanteSuite Design 14

- Setup and installation of software components and their upgrades including networking

configuration.

- Advanced technical support, analysis of log files, and other diagnostic tool output.

- Planning of physical architecture, deployment timelines, OID registrations, etc. including the

issuance and revocation of PKI certificates.

4.4.5.3. Concerns

A system administrator will typically have several concerns with technical solutions that may include:

- Security: What impact on the network surface area will the solution have, and how will the

solution adversely affect the operation of other systems within the enterprise.

- Reliability: What is the reliability of the solution and the burden on the administration that

technical support calls will place on resources?

- Cost: What is the cost of maintaining the infrastructure after initial capital costs? What are the

costs related to the installation of the system and what, if any, are the licensing impacts on the

operating budget and IP of other systems in the network (example: GPL)

- Auditability: What is the traceability of the solution? How easy are deployment mis-

configurations to find and diagnose? How difficult are logs to obtain? Do the logs contain

sufficient information to quarantine data and/or users and machines in case of breach?

4.4.6. Governing Authority / National Officers
National authority / officers are individuals who are responsible for the planning and maintenance of a

national health programmes. These individuals typically have moderate technical skills and are primarily

interested in stock management and reporting functions.

4.4.6.1. Skills

A national officer has data analytics skills and moderate technical skill required to customize reports and

manipulate data in Excel. A national officer or programme coordinator may be interested in customizing

reports themselves.

4.4.6.2. Duties

The national officer’s primary duty is the running of secondary use reports and the leveraging of these

reports to perform business intelligence functions. The governing authority is also responsible for the

administration and creation of legislation.

4.4.6.3. Concerns

The national/governing authority’s primary concern will be that of provenance and governance

capabilities of the system. The national officer may be responsible for ensuring that new legislation

passed can be implemented within the system and that reports are accurate and up to date.

4.4.7. Audit / Privacy Officers
Privacy officers are individuals who are responsible for the implementation and adherence of the system

and its users to policies configured for the jurisdiction. The privacy officer is also concerned about

security breaches, performing spot audits to ensure that users are using the system correctly.

SanteDB/SanteSuite Design 15

4.4.7.1. Skills

The privacy officer is of moderate technical skill, and high domain expertise skill. The privacy officer has

the ability to use Microsoft office products, as well as basic BI tools and web-interfaces for detecting

security breaches.

4.4.7.2. Duties

The primary duties of the privacy officer include the setup and validation of configured policies within

the core application as well as performing routine privacy audits on the system. The privacy officer is

also responsible for participating in threat risk assessments and privacy impact assessments.

4.4.7.3. Concerns

The primary concerns of the privacy officer are that the system will enforce consent policies imposed by

the deployment jurisdiction, and that any overrides are easily identifiable in any audit logs. The privacy

officer will also be concerned with the detail of PIA and TRA assessments performed against the system

and will require lots of documentation related to the security services provided by the system.

4.4.8. Application Developer / Implementer / Technical Expert
The application developer, implementer and technical expert class is used to describe those

professionals who will be developing integration points for the SanteDB system for the purpose of

implementing the solution in a jurisdiction.

4.4.8.1. Skills

The technical expert is of high technical skill and is able to understand application programming

interfaces (API) documentation and how these APIs can be used to control the system for the purpose of

their implementation.

4.4.8.2. Duties

The technical expert’s primary duties include the development and customization of the SanteDB

solution, as well as the deployment and configuration for a particular deployment. Technical experts

may also develop plugins and/or consumer applications of the platform.

4.4.8.3. Concerns

The technical expert’s primary concern is that of ease of implementation and integration of the solution.

The technical expert expects the system to provide sufficient application programming interface hooks

in order for them to sufficiently expand the system to complete whatever implementation work they are

performing. The technical expert will also be concerned with the stability and robustness of

documentation of interfaces as well as the performance of the system and availability of development

tools.

4.4.9. Patient
The patient class is used to describe the consumer of the healthcare services or one of their delegates.

This may include parents, relatives, guardians, etc. While patients are directly users of the system per-

se, they may play a role in the use of personal portals into the system.

4.4.9.1. Skills

Patients may be of varying skill from complete computer illiteracy, to high technical shrewdness. Patient

interfaces should use simple language and only display the necessary information for the patient to

understand the data that they are viewing.

SanteDB/SanteSuite Design 16

4.4.9.2. Duties

The primary duties of the patient class are the attending of appointments registered in the system, and

the obtaining of proper patient identification to be identified within the system.

4.4.9.3. Concerns

Primary patient concerns involve the proper and accurate identification of data, the cleanliness (clarity)

of interfaces and confirmation prior to submitting any changes to the system.

4.5. HDS Platform
The design of the backbone is not platform specific and could be implemented in a number of different

ways. The initial version discussed in this design document will be implemented using the Microsoft

server stack, making use of the following technologies:

Table 3 - HDS Implementation Platforms

Technology Reasoning Relates To

Microsoft .NET Framework Execution Environment Backbone, Web Interface,
Administrative Interface

Microsoft SQL Server 2014 Database Environment Backbone

PostgreSQL Server 9.4.x Database Environment Backbone

MEDIC Service Core Framework Robust set of existing plugins
available.

Backbone

There is future plans to upgrade the WCF based service core services into the MSIL implementation of

HTTP handlers. This will permit operation of HTTP interfaces on Linux and MacOS X.

4.6. Web Portal Operating Environment
The web portal operating environment for SanteDB will leverage NancyFX. NancyFX can operate in a

standalone manner, removing the need to setup IIS or other supporting infrastructure.

4.7. Mobile App Operating Environment
Reference mobile apps will be created for both the providers and the patients. To achieve the maximum

possible device support Xamarin will be used as the platform of choice. A wrapper in Xamarin will load

and execute HTML5 and JavaScript applet files.

4.8. Assumptions and Dependencies
The primary risk to implementation is the use of proprietary components upon which the stack will be

based. To achieve the lowest cost deployment for LMICs, components that cannot be licensed as free

and open source shall be avoided where possible.

SanteDB/SanteSuite Design 17

5. Requirements
This document outlines several basic use cases upon which the SanteDB platform was created. The

requirements listed here are a target of requirements that a system using the SanteDB platform could

perform.

5.1. User Stories / Use Cases

5.1.1. User Logs In With Valid Credentials
A clinical staff member uses the mobile app to log into their provided user account. The device has an

active internet connection. Upon login the device sends a unique device identifier to the central

authentication system proving its identity. If the user credential is valid, and the device credential is

valid, then the system audits the successful login.

5.1.2. User Logs In With Invalid Credentials
A clinical staff member uses the system to log into their provided user account. During the login process

one of the credentials provided to the system (device or user) is invalid. The system alerts the user to

the invalid credential condition and audits the invalid access attempt.

Alternate: The user continues to provide invalid credentials. After the third invalid login attempt the

device does not permit another attempt for a 60 second period effectively locking the device.

5.1.3. User Resets their Password
A clinical staff member wishes to log into the device, however forgets their password. The staff member

uses the system to reset their password from a registered device. The user enters their username and

selects a method of reset (e-mail or SMS) providing the necessary security check. The user receives an

out of band code that they enter into the forgotten password system. The forgotten password

subsystem validates the out of band code provided to the user with the token generated and, if valid,

permits the user to enter a new password.

5.1.4. User Reviews Appointments
If login is successful, the clinical staff member is presented with a dashboard portal. The user uses the

dashboard to review the appointments in the system. The system provides a list of appointments for

review and filtering by the user of the point of service device. The system does not disclose

appointments for patients outside the clinical staff members’s responsibility (to be applied by policy,

facility, etc.)

5.1.5. User checks-in existing Patient
A patient presents to the clinic for a routine service. The receptionist scans their identification which

performs an identification search within the system. The receptionist verifies the information and

proceeds to “check-in” the patient.

Alternate: The patient presents without an identification card, however has attended the clinic before.

The receptionist uses the system to search the local clinic’s user database.

5.1.6. User copies remote demographics into the system
A patient presents to the clinic for their routine service. The patient has never presented to the clinic

before, however has a national identification card. The patient presents this which is used by the

receptionist to download the patient’s demographic data. The system queries the national identification

SanteDB/SanteSuite Design 18

system and presents a series of results to the user. The receptionist selects the appropriate record and

indicates that the patient should be imported.

The receptionist continues to check-in the patient.

Variation: The receptionist updates the patient’s demographic data and submits the changes. The

system conveys this change to the national patient registry.

5.1.7. User registers a new Patient
A previously unregistered patient presents to the clinic. The patient has never visited the clinic before

and does not have a national or regional identification from another clinic. The receptionist gathers the

user’s demographic details and enters them into the system. The receptionist saves the new

demographic record which results in a new patient record within the system. The receptionist saves any

existing clinical data the patient has in the system. The system calculates a care schedule for the patient

and schedules appointments if necessary. The receptionist reviews the created schedule, and if

necessary, continues to check-in the patient.

Variation: This new identification is posted to the national records system which results in a new

jurisdictional identifier for the patient.

Variation: The new patient’s demographics exactly match the demographics of another patient already

registered in the SanteDB system. The receptionist is shown a warning confirming that this is in fact a

new patient or if the patient is a duplicate.

Variation: The new patient’s demographics exactly match the demographics of another patient already

registered in the SanteDB system. The patient is registered. At a later time, a district officer retrieves a

list of conflicts and resolves the duplicate record. The duplicate record’s clinical history data is copied

into the new patient master file.

5.1.8. Patient presents and is past due / has no appointment
A patient presents to the clinic without an appointment, or is late for an existing scheduled

appointment. The receptionist uses the system to look up the patient’s records, and looks at the missing

(past-due) events within the system. The receptionist requests the system to generate an on-demand

care plan/recommendation, the system creates an appointment with the past-due events scheduled on

the current date. The receptionist checks-in the patient for the created appointment.

Variation: The system displays the past due vaccination and automatically generates an updated

schedule and displays any warnings if appropriate (ex: some vaccines may be unsafe or may require a

different dosing).

5.1.9. Patient presents and provides new demographics
A patient presents to the clinic for their routine immunization. The patient informs the receptionist that

their demographics information (phone number, address, etc.) has changed. The receptionist keys the

changed data into the system and saves the patient’s demographic information.

5.1.10. Clinical Staff performs encounter
After being checked in, the patient waits in the “waiting room” for some amount of time. The clinical

staff member calls the patient into a private area to discuss their medical history, and reviews the

SanteDB/SanteSuite Design 19

actions to be taken for the specific encounter. The physician starts the encounter recording

measurements (such as height, weight, etc.) and adjusts the list of actions to be performed based on

what is considered safe.

5.1.11. Patient has an adverse reaction after encounter
After receiving an immunization, the patient is instructed to wait a certain time period before leaving

the clinic (discharge). During this time the patient develops a rash/fever/other reaction. The clinical staff

member uses the system to record the adverse event (i.e. updates the immunization encounter).

Alternative: After going home, the patient starts to develop an adverse reaction to the vaccine given

during a previous encounter. The patient returns to the clinic. The Clinical Staff Member amends the

previous encounter entering an adverse reaction.

5.1.12. National officer enables a new application
After reviewing an application on the mobile application store, the national officer decides that an

application meets criteria for a need within their jurisdiction. The national officer enables the

application on their service by allowing the application key and selecting the user roles / application

functions that the application is allowed to operate. This information is communicated to the SanteDB

backend where it is then distributed to all connected mobile devices.

5.1.13. District / Regional / National Officer runs summary reporting
A regional officer wishes to determine the performance of their immunization programme within their

jurisdiction. The officer uses the reporting engine of the solution to run a series of reports which

illustrate the performance of their region.

Alternate: The national officer uploads a new report to the reporting engine and selects which users may

view the report and specified parameters they are permitted to view.

5.2. Other Non-Functional Requirements

5.2.1. Performance Requirements
List any performance requirements if available. State any performance requirements and their rationale.

This will help implementers understand the intent and make suitable design choices.

1. The system SHALL be capable of performing simple queries and returning resources from the

local data storage device in a reasonable amount of time.

2. The system SHALL provide a mechanism for compressing inbound and outbound data.

3. The system SHALL provide a mechanism for fragmenting and bundling data. The system SHALL

allow consumers to dictate how this bundling occurs in order to minimize traffic. This

requirement is waived when standardized interfaces are implemented.

5.2.2. Safety Requirements
Specify requirements that are concerned with the possible loss, damage or harm that could result from

the use of the deliverables of this project. Refer to any policies that are being enforced.

4. The system SHALL persist all outbound messages and SHALL track the response to outbound

messages. Unsuccessful messages SHALL be flagged and the system SHALL provide a mechanism

for re-sending data.

SanteDB/SanteSuite Design 20

5. The system SHALL persist all inbound messages and their responses for any operation which

modifies data. The system MAY persist the entire inbound request and/or response message but

SHALL at least persist the unique message identifier. This functionality is related to exec-once

requirements.

6. The system SHALL NOT communicate PHI over unsecured channels and SHALL reject any

messages which are not sent over encrypted channels.

7. The system SHALL use node authentication when communicating with other infrastructure

components. Node authentication SHOULD be used for end-user devices.

8. The system SHOULD use a local root authority for node authentication purposes but SHALL at

minimum allow the trusting of a list of certificates if a root authority is not supported.

5.2.3. Security Requirements
Identify any requirements related to security or privacy issues. Define any user identity authentication

and authorization requirements. Refer to any policies or regulations that are being enforced

5.2.4. Quality Assurance Requirements
Specify any quality characteristics of the software that are important to either the implementer, or

customer. Some examples are: adaptability, availability, correctness, flexibility, interoperability,

maintainability, portability, reliability, reusability, robustness, testability, and usability. Write these to be

specific, quantitative and verifiable requirements when possible. At the least, clarify the relative

preference for various attributes such as ease of use over ease of learning.

SanteDB/SanteSuite Design 21

6. Interface Considerations
This section outlines the requirements of any external interfaces required to implement the project.

6.1. User Interfaces
Describe the logical requirements of a user interface that are required. This may include prototype

screen captures, diagrams, product style guidelines, layout constraints, standard buttons that will

appear on screens. Keyboard shortcuts and error message standards may also be listed here.

6.2. Software Interfaces
Identify any software interface that this project will provide. Include database services, libraries, tools,

and integrated components.

Table 4 - Software Interfaces

Software Package Type Provider License

Microsoft AjaxMin Class Library Microsoft Inc. MS-PL

Newtonsoft JSON.NET Class Library

NHAPI Class Library

Everest Framework Class Library Mohawk College Apache 2.0

AtnaAPI Class Library Mohawk College Apache 2.0

XDSApi Class Library Mohawk College Apache 2.0

Antlr3 Class Library

ExpressionEvaluator Class Library

RestSharp Class Library

StackExchange.Redis Class Library

Twilio.Api Class Library

SQLite.NET Class Library

SQLCipher Class Library

SwaggerWCF Class Library

6.3. Communications Interfaces
Describe any requirements associated with communications functions required by this product. This

could include e-Mail, web-browsers, network server communications, protocols, etc…

Table 5 - Communications Interfaces

Interface Service Method / Standard Provider

Health Data Management SanteDB iCDR FHIR STU3 / HDSI SanteDB

Clinical Protocol
Management

SanteDB CDSS FHIR STU3 / HDSI SanteDB

User Accounts SanteDB IdP OAUTH SanteDB

In-Application Reporting SanteDB ReportR SQL SanteDB

FHIR Service Core Core FHIR
Services

FHIR DSTU MEDIC SVC Core

Auditing ATNA Auditing ATNA + DICOM SanteGuard

HMIS Reporting TBD TBD TBD

Patient Identity Source Patient Identity PIX SanteMPI

SanteDB/SanteSuite Design 22

Patient Identity Consumer Patient Identity PIX SanteMPI

Patient Demographics
Search

Patient Identity PDQ SanteMPI

SanteDB/SanteSuite Design 23

7. Solutions Architecture

7.1. Solution Architecture
SanteSuite / SanteDB provides a loosely coupled open system architecture. Figure 1 illustrates the major

components of the platform where each bidirectional arrow represents a communications channel over

an open standard.

Figure 1 – SanteSuite / SanteDB System Architecture

The major components of the architecture are:

• SanteDB Server (iCDR): The iCDR is the primary platform component of the SanteSuite platform.

The SanteDB iCDR is responsible (at a high level) for:

o Maintenance of individuals’ medical records

o Scheduling and maintenance of medical appointments

o Forecasting schedules and demand

SanteDB/SanteSuite Design 24

o Integration with infrastructural systems such as Logistics Management Information

Systems (LMIS), Health Management Information Systems (HMIS), educational systems,

etc.

• SanteDB Disconnected Client Core (dCDR): These software pieces represent the offline

capacities of the SanteSuite / SanteDB platform. These include:

o SanteDB Disconnected Client: A thick client application that operates offline and hosts

SanteDB applets and applications. This client operates on Android, Linux, Windows and

provides complete miniature version of the iCDR for use offline, synchronizing data

when appropriate.

o SanteDB Disconnected Gateway: A version of the Disconnected Client which exposes

standards based interfaces (no user interface) for applications that would otherwise

require an internet connection, to function appropriately using FHIR or HL7v2.

o SanteDB Disconnected Server: A version of the disconnected client that can be used at

clinics which require local connectivity (between systems) while not being connected to

the internet (LAN but no WAN)

• Standards Based Systems: Represents third party, existing clinic assets such as admitting

systems, EMRs, etc. which integrate directly with the iCDR using one of its many standards

based interfaces.

• SanteDB Applications: Represent applications such as EMRs, HISs, Mobile Applications, and

custom websites which use the HDS to convey data to end users. This also include s the

reference implementations of the patient and provider mobile applications.

• SanteSuite HIE Offerings: These are specialized, purpose focused instances of SanteDB’s iCDR to

perform a particular function.

7.1.1. SanteDB / SanteSuite Pre-Packaged Solutions
SanteDB operates at the core of the SanteSuite product offerings. SanteSuite community assets are then

customized for particular operational contexts.

• SanteEMR: Is a fully functioning offline-first EMR leveraging SanteDB’s matching, storage,

privacy and security controls to offer a complete clinic management solution.

• SanteMPI: Is a fully functioning Master Patient Index (MPI) which leverages SanteDB’s powerful

standards based interfaces and matching plugins to operate as an MPI.

• SanteGuard: Is a fully functioning security audit repository which leverages SanteDB’s data

storage layer and communications capabilities to operate as a fully functioning RFC-3881,

DICOM or FHIR R4 security audit repository.

• SanteInsights: Is a reporting plugin solution that allows SanteSuite products (via SanteDB) to

automatically de-identify inbound data and submit to a centralized data warehouse service.

• SanteGrid: Is a federation solution which allows multiple SanteDB services and products to be

federated geographically, by program area, etc.

7.2. Network / Physical Architecture
The SanteDB iCDR is designed to support a wide range of deployment options. This will increase the

scalability of the solution across environments. There are envisioned to be three types of deployments

supported by the SanteDB infrastructure:

SanteDB/SanteSuite Design 25

1. Single Server – In this deployment all necessary functions run on one physical or virtual server.

This will be the default installation supported for developer installations and staging

environments.

2. Simple Multi-Server – In this deployment functional components are split across servers to

balance load. This deployment will see use of multiple application servers, multiple database

servers, and shared memory caching.

3. Federated – In this deployment a series of HDS environments are linked together in a federation

of servers. This type of deployment is an envisioned future state.

7.2.1. Single Server Deployment
The single server deployment option simply places the CDR, caching, databases, and supporting tools

onto one server. A sample single server deployment is illustrated in .

Figure 2 - Single Server Deployment

7.2.2. Multi-Server Deployment
A multi-server deployment of SanteDB is also supported. Each of the application server pieces has been

designed with the goal that they can split apart based on role. A multi-server deployment will require

some planning and will depend solely on the environment into which the service is being deployed.

Illustrates a simple multi-server deployment whereby application services are split across physical

servers and the database is not scaled.

SanteDB/SanteSuite Design 26

Figure 3 - Multi Server Deployment Example

This form of deployment can also be scaled out to meet a much larger environment as well. Illustrates

the extreme stress test environment (ESTE) used for SanteDB testing with approximately 4 million fake

patients. The ESTE environment illustrates database, application, and ancillary server scale out

opportunities.

Figure 4 - High capacity scale-out

SanteDB/SanteSuite Design 27

7.3. Software Architecture

7.3.1. SanteDB’s Clinical Data Repository Architecture
The CDR portion of SanteDB is based heavily upon the micro-services architecture. In this architecture, a

series of pluggable services implement a series of contracts. Whenever a function unit wishes to

perform a unit of work it will ask the host context (IServiceProvider) to get the currently configured

service provider.

The service types provided by SanteDB’s HDS are illustrated in Figure 5.

Figure 5 - SanteDB HDS Component Architecture

Each service is described in more detail in Table 6 with those services provided by the MARC-HI Service

Core framework marked in red.

Table 6 - SanteDB HDS Services (To be updated)

Services Contract Description

Messaging IMessageHandlerService The message handler service is started
upon application start/stop and is used to
receive messages, parse them into a
canonical form.

IMessagePersistenceService The message queue service allows
messaging services to queue inbound
messages that need re-processing.

Authorization IIdentityProviderService Responsible for authorizing and
interacting with the identity management
system configured in SanteDB. For
example, if LDAP authentication was
preferred then there would be an
LdapIdentityProviderService

IDeviceIdentityProviderService Responsible for authorizing and managing
the principals related to security device
and node authentication.

SanteDB/SanteSuite Design 28

IApplicationIdentityProviderService Responsible for authorizing and managing
application principals (OAUTH Client keys)
to be used for validating third party
applications can communicate with
SanteDB.

IRoleProviderService Responsible for maintaining and managing
roles on the identity provider.

ServiceCore IStockManagementService,
IMailMessagePersistenceService

These clinical data services are
responsible for the orchestration of
underlying functions to perform the
specified operations they define. For
example: The appointment scheduling
service would be responsible for finding
recommended dates for a particular clinic.

IConceptService The concept management service is
responsible for managing the internal
concept dictionary found within the
SanteDB database.

Consent IPolicyDecisionService The policy decision service is responsible
for ultimately deciding the outcome of the
policies registered for a particular object
(called a securable) and telling the
enforcement service how it thinks the
data should be handled (Grant, Elevate,
Deny)

IPolicyInformationService The policy information service is
responsible for maintaining the linkage
between policies and securables.

IPolicyEnforcementService The policy enforcement service is
responsible for the actual enforcement of
the policy. The PEP is responsible for
masking data, raising audits, blocking
access.

Audit IAuditRepositoryService (storage)

The audit repository service is responsible
for storing local copies of audits in the
SanteDB server that is running. The audit
repository service allows for querying and
insertion of audits

IAuditorService The auditor service is responsible for
shipping audits to a central audit
authority.

Repositories IRepositoryService<>

The repository services are responsible for
the storage and business logic steps of
storing a retrieving data to/from the data
layer. All presentation layers use the
repository layer to interact with objects.

SanteDB/SanteSuite Design 29

Data Store IDataPersistenceService<> The data persistence service is responsible
for taking the internal canonical model of
the SanteDB HDS and translating that data
into the physical data storage unit.

Forecasting IClinicalProtocolRepository
IClinicalProtocolService

The forecasting service is used for creating
care plans and for maintaining and
managing the central list of clinical
protocols that can be used in the SanteDB
platform.

BusinessRules IBusinessRulesService<> The IBusinessRules services provide an
opportunity to alter the behavior of
SanteDB within the context of an applet.
IBusinessRules support being executed on
certain data triggers (Before/After)
(Insert/Update/Obsolete/Query/Retrieve).

Notification IClientRegistryNotificationService The notification service is used to alert
other systems of real-time data storage
events. This is the hook that will most
likely be used when implementing pure
ODD in SanteDB HDS or when merges or
patient registrations occur.

Figure 6 illustrates each of the services contained within SanteDB server and their relationship to one

another.

Figure 6 - HDS Component Execution Flow

7.3.1.1. Daemon Services

The IDaemonService is not a service contract per-se, rather it is a scaffold interface (contract) which can

be used by services which need to operate as a daemon within the SanteDB application context.

SanteDB/SanteSuite Design 30

Daemon services are started as application context start and shut-down at application context stop.

Daemon services are started in the order in which they appear in the application host’s configuration

file. If daemon services require another daemon to be started they can subscribe to the dependent

daemon’s “Started” event.

7.3.1.2. Job Services

A job service represents a piece of C# code that can be executed at-will by an administrator. Examples of

job services include:

• Exporting data from the main database to a data warehouse

• Synchronizing data from SanteDB to another system that may or may not support messaging

• Creating a global, country-wide forecast of a particular care protocol

Job services implement the IJob interface. Jobs can declare the parameters (types and name of

parameters) that they support. Parameters will be exposed/collected from the user prior to executing

the administrative job.

7.3.1.3. Timer Services

Timer service jobs are implemented via the ITimerJob interface. Their schedules are dictated by the

timer service’s configuration mechanism. The default timer job defined in the MARC-HI ServiceCore

framework uses the application configuration file to manage the execution of timer jobs. SanteDB may

implement additional functionality in future releases to allow database based configuration to occur.

7.3.1.4. Business Rules Services

The business rules services are responsible for the execution of business rules based on system events.

There are two types of services which can be classified as business rules:

1. Event Based: These services implement IDaemonService and subscribe to system events for

which they are interested. For example, a BRE which validates a user’s password is of correct

length would subscribe to the PasswordChanging event of the IIdentityProvider.

2. Explicit Call: These services implement the IBusinessRulesService<T> and is executed on-

demand. These type of business rules services are only called from repository services that

require explicit business functions to be performed. An example of this would be an

IBusinessRulesService<Patient> which may provide functions to detect merges, or validation

functions

By default, SanteDB has a basic business rules engine service which provides access to both services as

JInt engine.

7.3.1.4.1 JavaScript Business Rules Engine

The JavaScript business rules engine allows implementers to describe their business rules as a series of

JavaScript functions. These have access to the SanteDB JavaScript model objects and can subscribe to

pre/post events on any model object.

The BRE service executes the JavaScript file which can register its rules via the SanteDBBre service. By

default the business rules engine exposes the following interfaces. Technical documentation is provided

in the JavaScript documentation.

The SanteDBBre module allows rule scripts to register two types of handlers:

SanteDB/SanteSuite Design 31

• Rules: These are functions which have access to data being persisted, or queried prior to or after

the event occurs. A pre event allows the rule to modify the object before the event occurs,

whereas a post event allows the rule to handle events after the object has been persisted.

• Validators: These are functions which are those which add validation errors to a return array for

a particular type.

The events to which rules can subscribe is outlined in .

Trigger Event Description

Insert Pre / Post Fired either before or after a new record is being created.
This is fired with a call to insert, regardless if the insert
ultimately resulted in an update.

Update Pre / Post Fired either before or after an existing record is explicitly
updated. This is not fired when the update occurred due to
an insert.

Obsolete Pre / Post Fired before or after an object is obsoleted from the
database.

Query Post Fired after a result set has been retrieved from the
database, but before the data is returned to an external
party. This allows privacy controls such as masking,
redaction, or pseudonymization.

Retrieve Post Fired after a record was specifically retrieved.

Illustrates the use of the SanteDBBre service to register a pre-event trigger which ensures that all

patients do not have a name.

/**
 * Sample Business Rule for Patient
 */
SanteDBBre.AddBusinessRule("Patient", "AfterInsert", { statusConcept: StatusKeys.ACTIVE
}, function (patient) {
 // No patients may have a name
 patient.Name = null;
 return simplePatient;
});

Here, the business rule is being added for “Patient” to be trigger “AfterInsert”, and only applied to

patients who have a status code of ACTIVE.

Illustrates the use of the SanteDBBre service to register a validation handler which will return a warning

about the use of the registration of males in a female only programme.

SanteDBBre.AddValidator("SubstanceAdministration", function (act) {

 var retVal = new Array();

 if (act.participation.RecordTarget.playerModel.genderConceptModel.mnemonic != "F")
 retVal.push(new SanteDBBre.DetectedIssue("Only females may receive vaccines!",
SanteDBBre.IssuePriority.Warning));

 return retVal;
});

SanteDB/SanteSuite Design 32

7.3.1.5. Clinical Protocol Services

SanteDB’s forecasting services (IClinicalProtocolService) is implemented by service classes which

perform on-demand forecasting / scheduling. Passive forecasting (based on events) should be done by a

daemon service which subscribes to events on the persistence layer and/or an IJobService instance that

performs the operation.

Forecasting services generate acts or alerts with min/max times representing the minimum safe date,

maximum safe date and suggested date for an action to occur. The forecasting service’s proposal

method accepts a parameter of type Patient and optionally any relevant data (existing vaccination

SubstanceAdministrations, Observations representing AEFIs).

There are two major concepts for the forecasting services in SanteDB:

- Care Protocol: A protocol represents a series of instructions conveyed as when/then conditions

which are concerned with a particular aspect of a patient’s care. For example, in SanteDB, a

protocol may be a particular antigen (OPV protocol) or other actions such as weight.

- Care Plan: The care plan represents an instantiation of a series of protocols which have been

determined for a particular patient. The care plan is an execution of the care protocols placed

into a coherent series of proposals.

In terms of execution, forecasting is handled by two separate interfaces:

- Protocol Definition: Which is responsible for defining the protocol. These are the clinical or

logical description of the definition without necessarily describing the protocol.

- Clinical Protocol Implementation: The implementation is the protocol handler which actually

has executable instructions in the form of when/then conditions which are executed to

construct the care plan.

7.3.1.5.1 Xml Protocol Provider

The default implementation of the protocol handler for SanteDB is the XML based protocol handler. This

handler defines a series of protocols in the http://santedb.org/cdss namespace. This namespace is

illustrated in .

http://santedb.org/cdss

SanteDB/SanteSuite Design 33

Element / Path Cardinality Description

@uuid 1..1 Uniquely identifies the clinical protocol in
the global scope of all SanteDB instances.

SanteDB/SanteSuite Design 34

@id 0..1 Identifies the clinical protocol within the
local SanteDB instance.

@name 0..1 A human readable name for the clinical
protocol. Example: “OPV Standard Schedule”

@version 0..1 Identifies the version of the protocol.
Example: May 2008 WHO

When 1..1 The “when” condition which guards entry
into the protocol. This when condition is
executed once, if the result is false all rules
in the protocol are skipped.

when/@evaluation 0..1 Identifies how the “when” condition should
be evaluated. Examples of values are: and
(all conditions must equate to true), or (any
condition must equate to true) or xor (only
one of the conditions should evaluate to
true.

when/hdsiExpression 0..* Represents a single guard condition
expressed as an HDSI query expression (see
documentation of the HDSI documentation
grammar)

when/linqXmlExpression 0..* Represents a single guard condition
expressed as a LINQ expression serialized as
XML. This representation is preferable to
string linqExpression when the full
expressivity of LINQ is required.

when/linqExpression 0..* Represents a simplified string representation
of a linq expression.

Rule 1..* One or more rules which should be
evaluated which represent the individual
steps in a clinical protocol.

rule/@uuid 1..1 Uniquely identifies the clinical step within
the global scope of SanteDB.

rule/@id 0..1 Identifies the rule in the local context of the
protocol itself.

rule/@repeat 0..1 Identifies the number of times that the rule
should be applied. For each iteration a value
named “$index” is incremented.

rule/when/@evaluation 0..1 Identifies how the when condition of the
rule should be evaluated.

rule/when/HDSiExpression 0..* Represents the HDSI query grammar for the
rule guard condition.

rule/when/linqXmlExpression 0..* Represents the XML serialized LINQ
expression of the rule guard condition.

rule/when/linqExpression 0..* Represents a LINQ expression of the rule
guard condition.

rule/then/@repeat 0..* Identifies the number of times that the
“then” condition should be applied. This

SanteDB/SanteSuite Design 35

differs from the @repeat attribution on
“when” as this @repeat results in the when
condition being evaluated once before
performing the “then” action.

rule/then/jsonMondel 0..1 The JSON representation of the model which
should be proposed when the “when”
condition evaluates to true.

rule/then/assign 0..* Instructs the engine to assign one or more
properties to the specified values. These
values (the text of the element) are LINQ
expressions which are evaluated to set the
specified properties.

rule/then/assign/@where 0..1 Identifies the guard condition which should
be applied in order for the assignment to
occur.

rule/then/assign/@propertyName 1..1 Identifies the property in the result model
(the then clause) which should be set to the
result of the LINQ expression.

rule/then/assign/@scope 0..1 Identifies the value of the then model which
carries the scope. This is used for the special
scope keyword in the LINQ expression and
can be used to copy values from other
proposals.

rule/then/add 0..* Instructs the engine to add an instance of
the result of the LINQ expression to the
current propertyName expression.

7.3.1.6. Configuration of the CDR

The first version of the SanteDB HDS backbone will leverage the MARC-HI ServiceCore framework

components heavily. These components are configured via application configuration files. This will

introduce some overhead on large-deployments as configuration files will need to be shared among the

application hosts performing a particular role within the SanteDB infrastructure.

Some components of SanteDB such as forecasting and protocols are configured via a central database

(or rather, their behavior is controlled by the central data store for SanteDB).

7.3.1.7. Plugin Management

Plugin management is performed via a series of assembly attributes which are embedded in the

assembly manifest of the iCDR plugins. The following attributes are to be used for identifying plugin

metadata:

Table 7 - Plugin Management Attributes

Attribute Use Description

AssemblyVersion R Identifies the version (major.minor.revision.build) of the
plugin. This information is used for dependency
information.

SanteDB/SanteSuite Design 36

AssemblyInformationalVersion O An informational version which is displayed on the
administration and management service interface.

AssemblyDescription R A human readable description of the plugin to appear on
the administrative interface.

AssemblyCopyright O Copyright information and/or use restriction messages.

Plugin R Identifies the assembly as a plugin. The plugin attribute
identifies the minimum version of the SanteDB core which
is required to run the plugin.

PluginDependency O Identifies the name and version of a dependency upon
which the plugin must have installed.

Additionally plugins may embed database modification scripts into their assembly manifest. These

database scripts are stored in an XML information format similar to Liquibase whereby “features” are

identified and relevant “install” and “uninstall” SQL commands are included. These SQL statements may

have guard conditions that are maintained by the database configuration technology selected.

Each feature file is also assigned an RDBMS invariant name that indicates the database management

system for which the installation script is intended (in the case that a plugin works with more than one

RDBMS, for example: the ADO.NET message persistence schemas).

SanteDB plugins may also embed a Plugin.xml resource into their assembly manifest. This plugin

manifest describes the service providers the plugin provides, as well as defines the configuration

parameters for that plugin.

For more information about the how plugins can expose configuration options to the SanteDB server

configuration system see .

7.3.1.8. Security Architecture

All the components of SanteDB are designed to consider how data is access securely from each layer and

between each component. This architecture requires that all access to method calls to secured services

pass an instance of IPrincipal which represents the authenticated user context within the current

execution pipeline.

There are four major concepts to the SanteDB security architecture:

• Identities: Represent an identification of a security asset such as user, device or application. For

example, the user jsmith would represent a user identity.

• Principals: Represent an authenticated identity (or collection of identities) representing a single

session. Principals have an identity (the user/device/application accessing the HDS) as well as a

series of claims about the identity (such as role/device/application/authentication method/etc.)

• Policies: Represent a definition of some action or group of actions applied against the SanteDB

HDS system (such as login, create role, etc.) or some securable within the SanteDB HDS data

store (such as privacy policies applied to data). Policy definitions are maintained by policy

information providers.

• Permissions: Represent a granting of access or rights to a policy for a principal. The decision on

whether a principal is granted a permission to perform an operation is made by a policy decision

provider.

SanteDB/SanteSuite Design 37

The creation of an IPrincipal instance can be from a local authority (such as simple SQL database

authentication) or from a remote authority (such as SWT, JWT, etc.).

7.3.1.8.1 Provenance

All objects at all layers of the SanteDB iCDR persistence layer use the concept of provenance to

attributing all data actions performed on the system. The SanteDB provenance object structure is always

written by the iCDR server, though clients may “suggest” values (which are captured in the server’s

provenance object.

The properties of the provenance object and their purpose (how they are set) is outlined in.

Property Description Source

User Captures the SID of the user identity that was
attached to the principal when the action
occurred.

Server Authentication
Context – User Identity

Application Captures the SID of the software application /
vendor attached to the principal when the
action occurred. With this data it is possible to
determine the software application responsible
for the change.

Server Authentication
Context – Application
Identity

Device Captures the SID of the physical node/device
attached to the principal when the action
occurred. With this data it is possible to
determine the software device responsible for
the action.

Server Authentication
Context – Device Identity

Session Captures the actual session attached to the
request. This is used for tracking or correlating
actions across requests and actions.

Server Authentication
Context – Session Identity

Establishment Captures the date / time that the database
transaction that made the change started.

Server Timestamp

External Ref Captures the provenance or user SID that the
client/submitter “claims” created the data. Note
that this value is for reference only.

Client Claim

External Ref Type Identifies the type of object that the external
security reference points to. Can be a
SecurityUser or SecurityProvenance object.

Calculated

7.3.1.8.2 Basic Security

The default SanteDB messaging services (FHIR, HDSI, etc.) can be configured to use HTTP basic

authentication. This authentication mechanism is tied into the WCF pipeline and uses the current

implementation of IIdentityProvider to authenticate username and password in the HTTP header. The

device identity is established via the TLS client certificate sent in the HTTP request.

Applications connecting to a HTTP Basic security service are furthermore required to send their

application public identifier and application secret in the X-SanteDBClient-Authorization HTTP header.

This header has the same format as the BASIC Auth header and includes the client id and secret as a

base64 encoded string.

SanteDB/SanteSuite Design 38

Claims can also be sent using this scheme via the X-SanteDBClient-Claim HTTP header. Claim values are

base64 encoded in format: claimURI=claimValue. The X-SanteDBClient-Claim HTTP header values repeat

and the authentication pipeline ensures that the user is permitted to make the claim provided.

For example, the HTTP headers for user “Jsmith” on client e612f88c-3ba3-40fe-8cd6-792836b2088c

making claim that purpose of use is TREATMENT would be:

POST /fhir
Authorization: BASIC anNtaXRoOnBhc3N3b3Jk
X-SanteDBClient-Authorization: BASIC
ZTYxMmY4OGMtM2JhMy00MGZlLThjZDYtNzkyODM2YjIwODhjOjc0MzQyYTE1MTY4YTQxODNhOWU2ZTllZTFmMGUxZWQ0
X-SanteDBClient-Claim: dXJuOm9hc2lzOm5hbWVzOnRjOnhhY21sOjIuMDphY3Rpb246cHVycG9zZT1UUkVBVE1FTlQ=
Content-Type: application/json+fhir
Content-Length: 2394

{

7.3.1.8.3 Federated Security

Figure 7 illustrates how a remote client can obtain a token from a federated security token service (STS)

representing an IPrincipal and pass it to the SanteDB HDS. The creation of a local IPrincipal is controlled

by a local IIdentityProviderService implementation. It is imperative that the ACS generate a token format

which is suitable for the HDS messaging interface to consume (i.e. the configurations match), otherwise

the HDS will have no mechanism for verifying tokens.

Figure 7 - Security Architecture

Any ACS service can be used with SanteDB, however it is recommended that the ACS being used support

the OAuth token service’s password grant and provide client/device authentication via TLS and/or HTTP

basic auth.

7.3.1.8.4 Default OAuth ACS Implementation

SanteDB provides an implementation of an OAuth STS which generates JSON Web Tokens (JWT)

compatible with SanteDB. The default implementation of the OAuth STS only supports password and

token refresh grant types.

The returned value is a JWT token which may subsequently be used by the client to access HDS service

interfaces. The JWT token validator is inserted into the WCF’s WIF pipeline and ensures that the token is

signed by a trusted ACS and that the token has not expired.

SanteDB/SanteSuite Design 39

The default ACS implementation performs node authentication (authentication of the device) using the

TLS certificate passed in the SSL transport layer. The device certificate used to connect to the ACS forms

the basis of authenticating the node and may be explicit (using the DeviceEvidence field in the

SecurityDevice table) or chained (to a root CA that the ACS trusts).

Applications are authenticated using the HTTP BASIC auth scheme described in the OAuth 2.0

specification. The application is expected to pass its client_id and client_secret as a username/password

in HTTP Authorize header.

The client can make claims about the request by using the X-SanteDBClient-Claim HTTP header. This

header is in the format claimType=claimValue and is base64 encoded. Multiple claims are separated by a

comma.

The following example represents a request for token for user jsmith from client e612f88c-3ba3-40fe-

8cd6-792836b2088c making claim that purpose of use is TREATMENT.

POST /oauth2_token
Content-Type: application/x-www-urlform-encoded
Authorization: BASIC
ZTYxMmY4OGMtM2JhMy00MGZlLThjZDYtNzkyODM2YjIwODhjOjc0MzQyYTE1MTY4YTQxODNhOWU2ZTllZTFmMGUxZWQ0
X-SanteDBClient-Claim: dXJuOm9hc2lzOm5hbWVzOnRjOnhhY21sOjIuMDphY3Rpb246cHVycG9zZT1UUkVBVE1FTlQ=
Content-Length: 204

grant_type=password&username=jsmith&password=password123&scope=http://demo.openiz.org/fhir

7.3.1.8.5 Claim Types

The implementations of IPrincipal should be claims based. In a claims based principal, the authenticated

user information contains a series of claims about that user such as their name, organization, the reason

for access, etc. The claims used in SanteDB are listed in Table 8.

Table 8 - Claim Types

Claim Value Use

urn:oasis:names:tc:xacml:2.0:resource:resource-id String The identifier of the
resource to which the
claim is about.

urn:oasis:names:tc:xacml:2.0:action:purpose PurposeOfUse Indicates the reason why
data is being queried. Used
for policy enforcement
decisions. Valid values are
drawn from the
PurposeOfUse concept set.

urn:oasis:names:tc:xacml:2.0:subject:role String The clinical roles that the
user has.

urn:oasis:names:tc:xspa:1.0: subject:facility Url The facility identifier to
which the principle
belongs.

urn:oasis:names:tc:xspa:1.0: subject:organization-id String The organization identifier
to which the principal
belongs.

SanteDB/SanteSuite Design 40

urn:oasis:names:tc:xacml:1.0: subject:subject-id String The distinguished name of
the principal.

http://openiz.org/claims/grant String The policies to which the
user has been granted
access by the ACS.

http://openiz.org/claims/device-id String The identifier for the
security device from which
the principal is operating.

http://openiz.org/claims/application-id String The identifier for the
security application from
which the principal is
operating.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/role

String Security roles to which the
user belongs.

http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/name

String The user name of the
principal.

http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/authentication

String The authentication result
of the principal.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/authenticationinstant

DateTime The instant in time when
the principal was
authenticated.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/authenticationmethod

String The method of
authentication used.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/expiration

DateTime The date/time that the
principal’s authentication
no longer is valid.

http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/sid

UUID The security identifier of
the principal. This is the
UUID of the user.

7.3.1.9. Policy / Privacy Enforcement Architecture

The enforcement of privacy and policies is handled through a series of services within the SanteDB

solution. From a high level, three different types of services are involved:

• Policy Information Provider (PIP) – Is responsible for storing information related to the policies.

The information point is responsible for maintaining a list of IPolicy objects which contain the

name, oid, handler (C# class which is executed upon policy decision), and elevation control.

• Policy Decision Point (PDP) – Is responsible for making a decision related to a policy (or series of

policies) for a given securable. The decision outcome is one of the following options:

o Deny – The principal has no authorization to access the requested securable or policy.

o Elevate – The principal can access the securable or policy however they require

additional authentication (such as 2nd level password, TFA, etc.)

o Grant – The principal is granted access to the specified securable or policy.

• Policy Enforcement Point (PEP) – Is responsible for listening to events from the SanteDB system

and leveraging the decision and information points to enforce the policy decision. This

implementation can vary between jurisdictions however by default involves either the masking

http://openiz.org/claims/grant
http://openiz.org/claims/device-id
http://openiz.org/claims/application-id
http://schemas.microsoft.com/ws/2008/06/identity/claims/role
http://schemas.microsoft.com/ws/2008/06/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authentication
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authentication
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod
http://schemas.microsoft.com/ws/2008/06/identity/claims/expiration
http://schemas.microsoft.com/ws/2008/06/identity/claims/expiration
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/sid
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/sid

SanteDB/SanteSuite Design 41

(i.e. there is something here you can’t see), redaction (i.e. removal of information), or partial

disclosure of records.

The process for enforcement is illustrated in Figure 8.

Figure 8 - Policy Enforcement Architecture

Policy enforcement may happen declaratively via enforcement of security attributes on code (most

notably the PolicyPermission and PolicyPermissionAttribute classes). The default policies included in

SanteDB are listed in . The HDS is expected to be aware of all policy identifiers, clients and services

accessing the HDS are merely to be aware of local policies which may have an impact on their function.

Table 9 - SanteDB Policies

Name OID Description

Superuser 1.3.6.1.4.1.33349.3.1.5.9.2 Identities which possess this
policy permission are granted
access to all functions in
SanteDB.

Access Administrative Function 1.3.6.1.4.1.33349.3.1.5.9.2.0 Identities which possess this
policy permission are granted
access to all administrative
functions of SanteDB.

Change Password 1.3.6.1.4.1.33349.3.1.5.9.2.0.1 Allows an identity to change any
other user’s password.

Create Role 1.3.6.1.4.1.33349.3.1.5.9.2.0.2 Allows an identity to arbitrarily
create a user role.

Alter Role 1.3.6.1.4.1.33349.3.1.5.9.2.0.3 Allows an identity to modify
roles, including role
membership.

Create Identity 1.3.6.1.4.1.33349.3.1.5.9.2.0.4 Allows an identity to create
arbitrary identities (users).

SanteDB/SanteSuite Design 42

Create Device 1.3.6.1.4.1.33349.3.1.5.9.2.0.5 Allows an identity to create
arbitrary devices.

Create Application 1.3.6.1.4.1.33349.3.1.5.9.2.0.6 Allows an identity to create
arbitrary applications.

Administer Concept Dictionary 1.3.6.1.4.1.33349.3.1.5.9.2.0.7 Allows an identity to create and
modify concept definitions

Alter Identity 1.3.6.1.4.1.33349.3.1.5.9.2.0.8 Allows an identity to alter
already created identities.

Alter Policy 1.3.6.1.4.1.33349.3.1.5.9.2.0.9 Allows an identity to create or
alter a policy.

Administer Data Warehouse 1.3.6.1.4.1.33349.3.1.5.9.2.0.10 Allows an identity to administer
the data warehouse

Login 1.3.6.1.4.1.33349.3.1.5.9.2.1 Grants an identity the login
permission.

Login Service 1.3.6.1.4.1.33349.3.1.5.9.2.1.0 Grants an identity permission to
login without user interaction.
User screens should not
demand this permission.

Unrestricted Clinical Data 1.3.6.1.4.1.33349.3.1.5.9.2.2 Identities which possess this
policy permission are granted
access to all clinical functions of
the SanteDB HDS.

Query Clinical Data 1.3.6.1.4.1.33349.3.1.5.9.2.2.0 Allows an identity to execute
any query against clinical data.

Write Clinical Data 1.3.6.1.4.1.33349.3.1.5.9.2.2.1 Allows an identity to create
and/or update clinical data.

Delete Clinical Data 1.3.6.1.4.1.33349.3.1.5.9.2.2.2 Allows an identity to obsolete
clinical data.

Read Clinical Data 1.3.6.1.4.1.33349.3.1.5.9.2.2.3 Allows an identity to fetch
arbitrary records.

Export Clinical Data 1.3.6.1.4.1.33349.3.1.5.9.2.2.4 Allows an identity to export
sensitive clinical data to an
external device (may be un-
encrypted)

Override Disclosure 1.3.6.1.4.1.33349.3.1.5.9.2.3 Allows a user to override a
disclosure deny.

Unrestricted Metadata 1.3.6.1.4.1.33349.3.1.5.9.2.4 Allows an identity unrestricted
access to metadata (extension
types, places, etc.)

Read Metadata 1.3.6.1.4.1.33349.3.1.5.9.2.4.0 Allows an identity to read
metadata.

Client Administrator 1.3.6.1.4.1.33349.3.1.5.9.2.10 Allows a user to access a client
administration function.

Unrestricted Warehouse 1.3.6.1.4.1.33349.3.1.5.9.2.5 Allows a user unrestricted
access to the datawarehouse

Write Warehouse Data 1.3.6.1.4.1.33349.3.1.5.9.2.5.0 Allows a user to read data from
the datawarehouse

SanteDB/SanteSuite Design 43

Delete Warehouse Data 1.3.6.1.4.1.33349.3.1.5.9.2.5.1 Allows a user to delete data
from the data warehouse

Read Warehouse Data 1.3.6.1.4.1.33349.3.1.5.9.2.5.2 Allows a user to read discrete
warehouse data

Query Warehouse Data 1.3.6.1.4.1.33349.3.1.5.9.2.5.3 Allows a user to execute
warehouse stored queries
(which may return less data
than discrete reads)

Unrestricted MDM 1.3.6.1.4.1.33349.3.1.5.9.2.6 Allows a user, application or
device to do anything with an
MDM record

Write MDM MAster Record 1.3.6.1.4.1.33349.3.1.5.9.2.6.1 Allows a user, device or
application to
create/update/obsolete an
MDM master record directly
(normally
user/device/applications can
only update their LOCAL record)

Read MDM Local Records 1.3.6.1.4.1.33349.3.1.5.9.2.6.2 Allows a user, device,
application to read all MDM
local records. Typically these
can only read their own local
record, or the master record.

Merge MDM Master Record 1.3.6.1.4.1.33349.3.1.5.9.2.6.3 Allows a user, device,
application to merge a MDM
master record explicitly.
Typically applications can only
merge records that they
themselves have created (their
provenance)

7.3.1.9.1 Most-Restrictive Enforcement

SanteDB’s default policy decision service provider operates on a basis of most-restrictive with default

DENY. In this evaluation scheme policy decisions are created as follows:

- If the principal has no data associated with the policy, the result of the decision is DENY,

- If the principal has one rule associated with the policy via role, device, or application then the

result of the decision is the rule’s configuration,

- If the principal has multiple rule instances configured via role, device or application then the

result of the decision is the most restrictive option.

For example, John Smith (user jsmith) is a member of USERS, CLINICAL and is accessing SanteDB from

application ReaderApp.

Policy From USERS From CLINICAL From ReaderApp Effective Set

Access
Administrative
Function

 DENY

Change Password DENY

SanteDB/SanteSuite Design 44

Create Role DENY

Alter Role DENY

Create Identity DENY

Login GRANT GRANT GRANT

Unrestricted
Clinical Data

 GRANT GRANT

Query Clinical
Data

 GRANT (implied) GRANT (implied)

Write Clinical
Data

 GRANT (implied) DENY DENY

Delete Clinical
Data

 GRANT (implied) DENY DENY

Read Clinical Data GRANT (implied) GRANT (implied)

Override
Disclosure

 GRANT DENY DENY

7.3.1.10. Report Services

It is expected that SanteDB implementations will leverage several different types of reporting engines

based on features of the report engine. For example, Jurisdiction A may choose SSRS whilst another may

choose JasperReports.

In order to ensure that client applications are given a consistent interface with which to generate

reports, the SanteDB HDS provides the IReportProvider service. This service is responsible for:

1. Exposing an enumeration of report objects which can be used by callers to determine the

installed reports on the report manager.

2. Maintaining the security attributes of the report, providing a the ability to restrict report access

based on policies.

3. Exposing the parameters that a particular report can accept for generation.

4. Executing the report and exposing the resultant files to callers.

5. Installing / reflecting reports to the backing report engine. For example, the IReportProvider

may provide a mechanism for reflecting JRXML or RDL report files and deciphering parameters

and report titles.

The IReportProviderService service is merely an extension of the IDataPersistenceService<Report>

interface.

7.3.1.10.1 Model

The IReportProvider service exposes a series of canonical objects which describe the reports contained

in the execution engine. Illustrates the objects exposed and their relations.

SanteDB/SanteSuite Design 45

Describes the report canonical model in more detail.

Class Property Type Description

Report (N/A) VersionedEntityData The report class identifies a single
report within the report execution
engine which can be executed by a
principal.

Source XElement The complete source of the report.
This is the RDL or JRXML, etc. which
comprises the report.

Name String The name of the report.

Description String A long form description of the
report, its intended purpose, etc.

ProviderId String The identifier by which the
execution engine knows the report
as.

Policy SecurityPolicy[] One or more policies which a user
must posses in order to execute
the report. These policies are AND.

Parameters ReportParameter[] One or more report parameters
which can be used to render the
report.

ReportParameter (N/A) VersionedAssociation The report parameter class
identifies a single report parameter
which can be applied to report.

class RISI

Report

«Property»

- Description: String

- Name: String

- ProviderId: String

- Source: object

Security::

SecurityPolicy

«property»

+ Handler(): Type

+ Id(): Guid

+ Name(): String

+ Oid(): String

ReportParameter

«Property»

- Default: Object

- DefaultProvider: String

- Description: String

- Name: String

- Order: int

- ProviderId: String

ReportDataType

«Property»

- Description: String

- Name: String

- SystemType: String

- Values: Object[]

- ValuesProvider: String

+Parameters

«property»

0..*

+Policy

«property»
0..*

+PropertyType

«property»
0..*

SanteDB/SanteSuite Design 46

Name String The human readable name of the
report parameter.

Description String A long form description of the
report parameter such as described
in a help document.

ProviderId String Identifies the id of the parameter
as the report execution engine
understands the report parameter.

Order Int32 The order in which the report
parameter should be displayed.

Policy SecurityPolicy[] One or more policies which the
principal must posses in order to
populate the parameter.

Default Object The default value for the report
parameter.

DefaultProvider IValueProvider The IValueProvider which can be
used to ascertain a default value at
runtime.

Type ReportDataType The type which represents the type
of data in the parameter.

ReportDataType (N/A) IdentifiedData The report data type class is used
to describe a type of data which
can be populated into a report. This
can be simple types like: Date,
String, etc. or complex types like
SecurityUserSelector,
VillageSelector, etc.

Name String A human readable name for the
report data type.

SystemType Type The underlying system type which
this datatype represents.

Description String The description of the report data
type.

Values Object[] One or more values which are
acceptable for the report
parameter type.

ValuesProvider IValueProvider Represents a value provider which
can be used in lieu of a static list of
allowed values. This is often used
for validating report parameter
values as well as a source for auto-
complete information.

7.3.1.10.2 Value Providers

A value provider represents a simple implementation of the IValueProvider interface which is used by

report parameters and parameter types to either provide values for an auto-complete list, default value,

etc.; or validate a value given by a caller. IValueProvider extends the IEnumerable<Object> interface.

SanteDB/SanteSuite Design 47

The methods provided by a value provider are listed in .

Method Return Parameters Description

GetEnumerator() IEnumerator<Object> None Gets a list of allowed or acceptable
values based on the current
authentication context.

Validate Bool Object Validates that the provided object is
valid according to the current security
context.

7.3.2. SanteDB’s Administration & Configuration Architecture
TODO:

- Discuss deployment

- Discuss cloud controller

- Discuss concept of REALM

7.3.2.1. Administration Management Interface (AMI)

The administration management interface (AMI) is used to control and harmonize the configuration of

SanteDB instances. The AMI function is three fold:

1. Cloud Control – The AMI is responsible for distributing the configuration of an SanteDB cluster

(example: in a private cloud) across application servers.

2. Configuration – The AMI is used by an administration tool to control the service interface and

configuring an instance of SanteDB.

3. Device Management – The AMI is used by administrators to on-board new devices, manage

their security certificates.

The service represents a hybrid of configuration, management of the Security* tables (applications,

devices, etc.) as well as control over security certificate services. The AMI service uses CAS to ensure

that the access to the service is only performed by administrators with appropriate functions. The

exception to this rule is are the security user functions for update whereby a user may update their own

information.

7.3.2.1.1 Operations

Illustrates the operations that are supported by the administration management interface (AMI).

Resource Operation Description

/ OPTIONS Gets options for the AMI service. Returns
options for the AMI service.

PING Ping the service to determine up/down

/?xsd={schemaId} GET Gets the schema for the administrative
interface. The id of the schema to be
retrieved.Returns the administrative
interface schema.

/alert GET Gets a list of alert for a specific query.
Returns a list of alert which match the
specific query.

SanteDB/SanteSuite Design 48

POST Creates an alert. The alert message to be
created.Returns the created alert.

/alert/{alertId} GET Gets a specific alert. The id of the alert to
retrieve.Returns the alert.

PUT Updates an alert. The id of the alert to be
updated.The alert containing the updated
information.Returns the updated alert.

/applet GET Gets a list of applets for a specific query.
Returns a list of applet which match the
specific query.

POST Creates an applet. The pak data.Returns the
created applet manifest info.

/applet/{appletId} GET Gets a specific applet. The id of the applet
to retrieve.Returns the applet.

DELETE Deletes an applet. The id of the applet to be
deleted.Returns the deleted applet.

HEAD Return just the headers of the applet id

PUT Updates an applet. The id of the applet to
be updated.The applet containing the
updated information.Returns the updated
applet.

/applet/{appletId}/pak GET Downloads the applet. The applet
identifier.Stream.

/application GET Gets a list applications for a specific query.
Returns a list of application which match
the specific query.

POST Creates a security application. The security
application to be created.Returns the
created security application.

/application/{applicationId} GET Gets a specific application. The id of the
application to retrieve.Returns the
application.

DELETE Deletes an application. The id of the
application to be deleted.Returns the
deleted application.

PUT Updates an application. The id of the
application to be updated.The application
containing the updated information.Returns
the updated application.

/assigningAuthority GET Gets a list of assigning authorities for a
specific query. Returns a list of assigning
authorities which match the specific query.

POST Creates an assigning authority. The
assigning authority to be created.Returns
the created assigning authority.

SanteDB/SanteSuite Design 49

/assigningAuthority/{assigningAuthorityId} GET Gets a specific assigning authority. The id of
the assigning authority to retrieve.Returns
the assigning authority.

DELETE Deletes an assigning authority. The id of the
assigning authority to be deleted.Returns
the deleted assigning authority.

PUT Updates an assigning authority. The id of
the assigning authority to be updated.The
assigning authority containing the updated
information.Returns the updated assigning
authority.

/audit POST Create audit in the HDS' audit repository

/certificate GET Gets a list of certificates. Returns a list of
certificates.

/certificate/{id} GET Gets a specific certificate. The id of the
certificate to retrieve.Returns the
certificate.

/certificate/{id}/revokeReason/{reason} DELETE Deletes a specified certificate. The id of the
certificate to be deleted.The reason the
certificate is to be deleted.Returns the
deletion result.

/changepassword/{id} PUT Changes the password of a user. The id of
the user whose password is to be
changed.The new password of the
user.Returns the updated user.

/codeSystem GET Gets the code systems. Returns a list of
code systems.

POST Creates the code system. The code
system.Returns the created code system.

/codeSystem/{codeSystemId} GET Gets the code system. The code system
identifier.Returns a code system.

DELETE Deletes the code system. The code system
identifier.Returns the deleted code system.

PUT Updates the code system. The code system
identifier.The code system.Return the
updated code system.

/crl GET Gets the certificate revocation list. Returns
the certificate revocation list.

/csr GET Gets a list of submitted certificate signing
requests. Returns a list of certificate signing
requests.

POST Submits a specific certificate signing
request. The certificate signing
request.Returns the submission result.

/csr/{certId} DELETE Rejects a specified certificate signing
request. The id of the certificate signing
request to be rejected.The reason the

SanteDB/SanteSuite Design 50

certificate signing request is to be
rejected.Returns the rejection result.

/csr/{id} GET Gets a specific certificate signing request.
The id of the certificate signing request to
be retrieved.Returns the certificate signing
request.

PUT Accepts a certificate signing request. The id
of the certificate signing request to be
accepted.Returns the acceptance result.

/device GET Gets a list of devices. Returns a list of
devices.

POST Creates a device in the HDS. The device to
be created.Returns the newly created
device.

/device/{deviceId} GET Gets a specific device. The id of the security
device to be retrieved.Returns the security
device.

DELETE Deletes a device. The id of the device to be
deleted.Returns the deleted device.

PUT Updates a device. The id of the device to be
updated.The device containing the updated
information.Returns the updated device.

/extensionType GET Gets the extension types. Returns a list of
extension types.

POST Creates the type of the extension. Type of
the extension.Returns the created
extension type.

/extensionType/{extensionTypeId} GET Gets the type of the extension. The
extension type identifier.Returns the
extension type, or null if no extension type
is found.

DELETE Deletes the type of the extension. The
extension type identifier.Returns the
deleted extension type.

PUT Updates the type of the extension. The
extension type identifier.Type of the
extension.Returns the updated extension
type.

/policy GET Gets a list of policies. Returns a list of
policies.

POST Creates a security policy. The security policy
to be created.Returns the newly created
security policy.

/policy/{policyId} GET Gets a specific security policy. The id of the
security policy to be retrieved.Returns the
security policy.

SanteDB/SanteSuite Design 51

DELETE Deletes a security policy. The id of the
policy to be deleted.Returns the deleted
policy.

PUT Updates a policy. The id of the policy to be
updated.The policy containing the updated
information.Returns the updated policy.

/role GET Gets a list of security roles. Returns a list of
security roles.

POST Creates a security role. The security role to
be created.Returns the newly created
security role.

/role/{roleId} GET Gets a specific security role. The id of the
security role to be retrieved.Returns the
security role.

DELETE Deletes a security role. The id of the role to
be deleted.Returns the deleted role.

PUT Updates a role. The id of the role to be
updated.The role containing the updated
information.Returns the updated role.

/sherlock GET Gets a server diagnostic report. The
diagnostic report to be created.Returns the
created diagnostic report.

POST Creates a diagnostic report. The diagnostic
report to be created.Returns the created
diagnostic report.

/tfa GET Gets the list of TFA mechanisms. Returns a
list of TFA mechanisms.

POST Creates a request that the server issue a
reset code

/user GET Gets a list of security users. Returns a list of
security users.

POST Creates a security user. The security user to
be created.Returns the newly created
security user.

/user/{userId} GET Gets a specific security user. The id of the
security user to be retrieved.Returns the
security user.

DELETE Deletes a security user. The id of the user to
be deleted.Returns the deleted user.

PUT Updates a security user. The id of the
security user to be retrieved.The user
containing the updated information.Returns
the security user.

SanteDB/SanteSuite Design 52

7.3.2.2. Sherlock Integration with JIRA

The Sherlock service on the administration management interface is used to collect logs from publishers

which submit bug reports to the configured HDS system. By default the HDS which is configured will

save the application diagnostic report to the hard drive, however there are configurations which are

able to send these diagnostic reports to a JIRA system.

The configuration for the Sherlock JIRA integration requires a JIRA server running version 6 of JIRA or

greater and will create issues via the REST integration interface. All issues are created under the

configured project with the label SanteDBAuto label. This allows the automatically created JIRA issues to

be filtered from regular issues created within the JIRA user interface.

7.3.3. Disconnected Client Architecture
SanteDB is designed as an open architecture, therefore consumer applications may be implemented by

third parties. However, to demonstrate the capabilities of the SanteDB data architecture and features, a

series of reference clients have been developed.

The primary client of the SanteDB immunization management system is the SanteDB Disconnected

Client. The disconnected client is designed to consume SanteDB HDSI services in a variety of capacities

to showcase how the system operates.

The disconnected client is designed as a cross Xamarin/HTML5 hybrid application. All heavy lifting

functions are performed in native C# / Xamarin functions whereas the user interfaces are rendered in

HTML5.

The architecture of the disconnected client is illustrated in .

The major components of the application architecture are:

- Business Model Objects : The HDS core object model is shared between the server and

disconnected client using .NET PCL libraries.

- Persistence Services : These services are responsible for persisting data in memory to either the

database (in offline mode) or the HDS backend (in online mode).

SanteDB/SanteSuite Design 53

- Synchronization Services : The synchronization services are responsible for managing the

synchronization mailbox for the disconnected client.

- Security Services : Are responsible for enforcing security on objects in the persistence store and

actions on the application.

- Configuration Services : Provide a consistent mechanism for configuration of application and

the applet features in the mobile application.

- Native Application Components : Represent the native components such as splash screen,

actions, authentication handlers, etc.

- Applet Integration Services : Provide a series of common interfaces with which the SanteDB

mobile applets can interact with the native mobile applications.

- Applets : These are the user screens for the SanteDB DC.

The applet infrastructure allows a jurisdiction to easily customize the SanteDB user experience without

the need for having C#/Xamarin programmers on staff. It also allows a jurisdiction to deploy applets to

mobile devices easily.

7.3.3.1. Synchronization

The synchronization of the SanteDB disconnected database and the SanteDB back-end are performed

using the subscription interface. The client is responsible for storing which local resources it has

subscribed to and exhausting the most important data from the server when it becomes available.

The subscription interface is unique in that it can only be connected to via devices in the synchronization

role. The subscription interface allows a device to subscribe and un-subscribe to data for which it is

interested. The device then exhausts its message box

This process is triggered several times throughout the lifecycle of the application:

- On application start-up : The mobile device is responsible for sending HDSI STATE commands

(HTTP HEAD) to the ControlAct resource. The HEAD operation is described in more detail in

section

7.3.3.2. Applet Architecture

SanteDB applets are shared resources between the server and disconnected client. An applet contains

one or more of the following types of “assets”:

• User Interfaces – Which are written using HTML5 and JavaScript. These files use the specialized

tags which are rendered at runtime to maximize code reuse. The default infrastructure for

applets is AngularJS, however this can be overridden by using a different core module.

• Business Rules – Business rules are JavaScript files within the applet which dictate specialized

validation / behaviors on both the client and server. Business rules are described in more detail

in 7.3.1.4.1 (on page 30).

• Protocols – Protocols are clinical protocols which will be used by SanteDB to calculate a care

plan. These protocols are designed using protocol XML script and is described in more detail in

7.3.1.5.1 (on page 32).

• Templates – Templates are pre-defined snippets of data which define a common structure for

data. Templates will have an input form and a view. These are used by common patient history

components to render the data in question properly.

SanteDB/SanteSuite Design 54

• Widgets – A widget is a small piece of user interface code which is injected into a master page.

Widgets are defined by their type (tab, panel, etc.) and their scope (patient, facility etc.).

• Reports – Mobile reports are defined using the mobile reporting engine in the disconnected

client. This engine is used to render simple tabular reports and can do things like pivot and

group report data.

7.3.3.2.1 Applet Manifest

The applet manifest is used to provide meta-data about the applet being deployed or compiled. Applet

manifests contain vital information such as the templates exposed by the applet, the version, menus,

and localization strings.

The applet manifest

7.4. Communications / Interoperability Architecture
The primary mechanism of communication with the SanteDB HDS is via the interoperability and

communications layer. These services allow multiple user interfaces, or point of service devices, to

connect with the HDS. The overall communications architecture for the HDS is outlined in

Figure 9 - HDS Messaging Interfaces

The interfaces are detailed in Table 10.

Table 10 - HDS Messaging Interfaces

Interface Standards Version Description

HDSI Proprietary 1.0 The Immunization Management Service
Interface provides a raw 1-1 mapping
between REST and the backing HDS data
store.

RISI Proprietary 1.0 The Report Integration Services Interface
provides a direct aggregate view of the
backing database as well as queries
supporting reporting services such as MS-
SSRS or JasperReports. The RISI interface is
readonly and intended to be used for BI
purposes only.

AMI Proprietary 1.0 The Administration Management Interface
allows access to a variety of administrative

SanteDB/SanteSuite Design 55

functions including restarting services,
deploying plugins, configuration and meta-
data editing. It has no access to the clinical
store and is available to administrators
only.

LLP HL7 V2 over MLLP 2.5 The HL7v2 interface provides ADT, QBP,
VXQ, VXU and SRM messaging support and
is intended to provide a bridge to HDS
functionality.

XDS IHE XDS + IHE IC XDS.b The XDS.b interface supports the export
and import Immunization Content (IC) CDA
documents.

FHIR HL7 FHIR 1.4 The HL7 FHIR interface supports the
manipulation of HDS resources using the
HL7 FHIR standard. The version of FHIR
implemented on the HDS is FHIR STU3.

7.4.1. Communicating with the HDS
All interfaces to the HDS are secured with one of the allowed authorization schemes. These include

SAML, OAUTH or Basic AUTH. Communications with the HDS protocols are made using the Windows

Communication Foundation (WCF) framework and/or the NHAPI HL7v2 framework for LLP.

There are six interfaces that the HDS will eventually support:

- Immunization Management Service Interface (HDSI) – A proprietary, REST based interface which

provides a near 1-to-1 mapping of clinical functionality in the HDS to clients.

- Report Integration Services Interface (RISI) – A proprietary, REST based interface which provides

a series of interfaces for acquiring the location and parameterization of system reports for use in

the HDS.

- Administration Management Interface (AMI) – A proprietary, SOAP based interface which is

used to perform administrative operations on the nodes in an SanteDB cluster.

- HL7® FHIR™ - Fast Health Interoperability Resources (FHIR) is a standardized REST interface for

interacting with the HDS.

- HL7® Version 2 – HL7v2 interfaces provide VXU capability within the HDS and are implemented

per CDC specification for immunization reporting.

- HL7® CDA – Interface which provides and imports CDA documents containing immunization

summaries.

7.4.2. Immunization Management Service Interface (HDSI)
The HDSI interface provides a 1-to-1 mapping of business model artifacts to a wire level representation.

The HDSI is primarily designed for clients which will require sending and receiving large amounts of RAW

data from the HDS for purposes like offline synchronization.

The HDSI does no “messaging” of data and data values in the underlying business data model (i.e. values

are not directly deep-serialized). The HDSI interface’s principles are:

- Provide referentially valid data to clients as it exists in the HDS data store.

- Accept referentially valid data from clients as it was presented to the HDS.

SanteDB/SanteSuite Design 56

- Faithfully store and reproduce the objects received on the wire with minimization of duplication.

7.4.2.1. Transport

The HDSI service is a RESTful service which exposes the resources listed in . The semantics REST API are

described in .

Operation URL Method Description

Create /{resource} POST Instructs the HDS to create the
specified resource.

Create / Update /{resource}/{id} POST Instructs the HDS to update the
specified resource if it exists or
create it if it doesn’t.

Update /{resource}/{id} PUT Instructs the HDS to update the
specified resource.

Patch /{resource}/{id} PATCH Instructs the HDS to apply a
patch to the specified object.

Touch /{resource}/{id} TOUCH Instructs the HDS to set the
current modification time of
the specified resource to the
current system time. This does
not result in a new version, as
no clinical data changes.

Query /{resource}?{query} GET Instructs the HDS to perform
the specified query.

Read /{resource}/{id} GET Instructs the HDS to fetch the
most recent version of the
specified resource.

History Query /{resource}/{id}/history GET Instructs the HDS to fetch all
history of the specified item.

History Read /{resource}/{id}/history/{vid} GET Instructs the HDS to fetch a
specific version of the record.

History /{resource}/history GET Instructs the HDS to fetch all
changes performed on the
specified resource.

Obsolete /{resource}/{id} DELETE Instructs the HDS to obsolete
the specified resource.

State /{resource}?{query} HEAD Returns headers which
represent the latest resource
id, version id and date of
modification for the particular
resource.

History /history GET Retrieves the complete history
of changes on the server
matching. The result is a
collection of control acts which
represent the change.

SanteDB/SanteSuite Design 57

Patch /{resource}/{id} PATCH Indicates that the client wishes
to issue a patch to an existing
resource.

Options /{resource} OPTIONS Retrieves a list of options
which the server supports.

7.4.2.2. Response Codes

The HDSI will respond with a series of HTTP response codes which detail the outcome of the response.

In addition to the HTTP response code, an object will be returned which allows the client to compute the

reason why the HTTP error was returned.

Lists the response codes and their meaning in the context of the ISMI.

Code Error Description

200 OK / No Error This error condition indicates that the entire operation
succeeded and the response represents the desired
operation.

201 Created This status code indicates that the resource was created on
the server and additional processing may occur.

302 Moved This status code indicates a redirect. This is used when a
request is made to an HDSI interface on a server where a
remote IDataPersistence is configured (such as in a load
balancing or migration scenario).

400 Bad Request This response code indicates that there was no possible
way for the HDSI to comprehend the request sent to it.
This is typically done when a low level processing
instruction fails (such as bad compression data)

401 Unauthorized This response code indicates that the requested resource
requires permissions which are above the current
permission set of the user. This may indicate that the
current user is ANONYMOUS and is trying to access a
protected resource, OR may indicate a desire by the HDSI
interface for the client to elevate themselves.

403 Forbidden This response code indicates that the authorized user is
not permitted to access the requested resource. This
represents a full DENY policy decision.

404 Not Found This response code indicates that the resource requested
cannot be found.

405 Method not allowed This response code indicates that the client attempted to
perform an operation on the HDSI interface which is not
permitted.

409 Conflict This response code indicates that an update failed because
of a formal validation constraint. Or a patch application
failed due to test failure.

410 Gone This response code indicates that the resource being
requested DID exist, however has since been obsoleted.

415 Unsupported Media Type This response code indicates that it is not possible for the
HDSI to process the request content. This error typically

SanteDB/SanteSuite Design 58

occurs when the client is submitting data which is not JSON
nor XML.

422 Entity could not be
processed

The server understood the request (content/type and
content) however was unable to process the request due
to some state issue or business rule violation.

500 Server Error This error indicates that the server encountered an error
while trying to perform the operation.

503 Service Unavailable This error indicates that the HDSI service is temporarily
unavailable due to current startup or partial startup (i.e. an
error occurred starting the HDS).

7.4.2.3. Resource Types

The HDSI exposes resources contained in the underlying business model API layer. In addition to these

resources, the HDSI exposes several “meta” resources which wrap complexities around

appointment/scheduling. The HDSI specific resources are found in the http://openiz.org/HDSi rather

than the http://openiz.org/model namespace.

Table 11 - Resource Types

Resource Namespace Description

Concept http://openiz.org/model Represents a concept such as
“arm” or “OPV”.

ReferenceTerm http://openiz.org/model Represents the wire
representation of a concept
such as a CVX or ICD code.

Act http://openiz.org/model Represents a general action that
is or was performed such as a
concern.

Observation http://openiz.org/HDSi A classification of Act which
represents the observing of
some value. Sub-classed
resources are TextObservation,
CodedObservation, and
QuantityObservation.

PatientEncounter http://openiz.org/model A classification of Act which
represents an encounter that
the patient has or will have with
a health provider.

SubstanceAdministration http://openiz.org/model Represents the administration
of a substance to a patient.

Entity http://openiz.org/model A generic class representing an
unclassified entity.

Patient http://openiz.org/model A classification of an entity
representing a Patient.

Provider http://openiz.org/model A classification of an entity
representing a healthcare
provider.

http://openiz.org/imsi
http://openiz.org/model

SanteDB/SanteSuite Design 59

Organization http://openiz.org/model A classification of an entity
representing an organization.

Place http://openiz.org/model A classification of an entity
which represents a place where
health services are delivered.

Material http://openiz.org/model A classification of entity which
represents some sort of
material such as a kit,
classification of drug or boxed
item.

ManufacturedMaterial http://openiz.org/model A classification of entity which
represents a manufactured
material. Manufactured
materials are those acquired
from a manufacturer.

Bundle http://openiz.org/model A collection of SanteDB
elements bundled for the
purpose of transporting
referenced objects.

ConceptSet http://openiz.org/model A series of concepts which are
grouped together for some
purpose such as roles, statuses,
etc.

ExtensionType http://openiz.org/model Represents a definition of an
extension which can be applied
when communicating with the
particular server.

AssigningAuthority http://openiz.org/model Represents the registered
assigning authorities available
on the HDSI server.

ConceptRelationshipType http://openiz.org/model Represents classifications of the
concept relationship types.

PhoneticAlgorithm http://openiz.org/model Represents phonetic algorithm
information.

Procedure http://openiz.org/model Represents procedure
information (see logical data
design)

7.4.2.3.1 Base Types

The HDSI resources extend a series base classes which, while not resources per se, are included here to

ensure the type definitions which follow are more concise.

Table 12 provides a summary of the base entity data class. The base entity data class is use to convey

data which is related to a data entity where the data is attributed.

SanteDB/SanteSuite Design 60

Table 12 - Base Entity Data

Element Type Description

id
[1..1]

UUID Uniquely identifies the business model entity.

creationTime
[1..1]

DateTime Identifies the full timestamp (from the service)
when the specified data was created.

obsoletionTime
[0..1]

DateTime When present, indicates the date/time that the
entity became or will become obsolete.

createdBy
[1..1]

UUID Identifies the user who was responsible for the
creation of the data model entity.

obsoletedBy
[0..1]

UUID Identifies the user who was responsible for the
obsoletion of the data model entity.

Table 13 illustrates the versioned entity data class is a generic class and indicates common data

elements which are required for entities which are versioned in the SanteDB system.

Table 13 - Versioned Entity Data

Element Type Description

SanteDB/SanteSuite Design 61

previousVersion
[0..1]

UUID The version identifier of the previous version of
this entity.

version
[1..1]

UUID The unique identifier for the represented
version.

sequence
[1..1]

int An incrementing serial number which is used to
identify the order in which the version was
created. This number is not consistent between
systems in value, however must be consistent in
ordering.

Table 14 conveys how the association class is used to track a simple association between a source and

the current item. The association classes point to the source of their association.

Table 14 - Association

Element Type Description

source
[1..1]

UUID The source data entity to which the associative
class is associated.

The versioned association class represents a special association whereby the associative entity is applied

to a specified series of versions (Table 15).

Table 15 - Versioned Association

SanteDB/SanteSuite Design 62

Element Type Description

effectiveVersionSequence
[1..1]

int The effective version of the source entity to
which the associative entity is active.

obsoleteVersionSequence
[0..1]

int The version of the source entity where the
associative entity is no longer active.

Alternate identifiers (identified as element “identifier”) are represented in entities as illustrated in .

Element Type Description

value
[1..1]

String The value of the identifier as assigned by the
specified authority.

authority
[1..1]

Authority Represents information about the source
authority from which the identifier is assigned.

authority.name
[0..1]

String The optional name of the authority. For
example: Good Health Hospital Systems

authority.domainName
[1..1]

String The domain name of the authority. In HL7v2
speak the CX.4 value. Example: GHHS

authority.description
[0..1]

String A human readable description of the assigning
authority.

authority.oid
[1..1]

String The OID of the authority. Example: 1.2.3.4.5

SanteDB/SanteSuite Design 63

authority.assigningDevice
[0..1]

UUID The identifier of the SecurityDevice which is
allowed to assign identifiers.

type
[0..1]

Type Identifies the type of the identifier. Example:
Business, Stock, etc.

type.scopeConcept
[1..1]

UUID Identifies the allowed scope of identifier use.
This maps to the classCode on Entity and Act
classes where the identifier can be used.

type.typeConcept
[1..1]

UUID Identifies the type of identifier. Example: Stock,
Business, etc.

7.4.2.3.2 Extensions & Tags

The HDSI interface represents the extension and tag values stored in the underlying data model.

Extensions and tags are used to extend HDS data model classes to support use cases not envisioned in

the original design.

Tags are version independent data elements which are attached to acts and entities and used for things

such as workflow control, and security.

Element Type Description

key
[1..1]

String Identifies the type of tag applied to the
act/entity.

value
[0..1]

String Carries the value of the tag. Some tags may be
indicator flags (i.e. the presence of the tag
indicates something).

Extensions are used to represent data elements which are associated with the clinical meaning of an act

or entity. Unlike tags, extensions can carry more robust data and typically result in new versions of the

associated entity and acts.

SanteDB/SanteSuite Design 64

Element Type Description

value
[0..1]

Base64binary The serialized value of the extension
represented in the instance.

extensionType
[1..1]

Extension Type The type of extension. Indicates how the value
of the extension should be serialized and/or
parsed and interpreted.

extensionType.id
[1..1]

UUID Uniquely identifies the extension type.

extensionType.name
[0..1]

String The human readable name of the extension
type.

Notes are textual information which are intended to be displayed verbatim to human participants.

Notes, like tags, are version independent.

SanteDB/SanteSuite Design 65

Element Type Description

text
[0..1]

String The textual content of the note attached to the
act or entity.

author
[1..1]

UUID Identifies the author of the note.

7.4.2.3.3 Concept

The concept resource can be used to get, search, fetch history, create, update and obsolete clinical

concepts used in the SanteDB HDS system. Concepts are used to represent abstract facets of care

delivery. For example: arm, Polio Vaccine, Allergy, etc.

SanteDB/SanteSuite Design 66

Table 16 - Concept

Element Type Description

isReadonly
[1..1]

bool Indicates whether the concept is
readonly (i.e. no changes can be made)

mnemonic
[0..1]

String A invariant string which can be used to
reference the concept in queries.

statusConcept
[1..1]

UUID The identifier of the status concept
which represents the current status of

SanteDB/SanteSuite Design 67

the concept as of the represented
version.

relationship
[0..*]

Relationship One or more relationships that this
concept has with other concepts.

relationship.targetConcept
[1..1]

UUID Identifies the target concept which this
concept is associated with.

relationship.relationshipType
[1..1]

UUID Identifies the concept relationship type
(same-as, inverse-of, etc.)

referenceTerm
[0..*]

ReferenceTerm One or more reference terms (wire
terms) which can be used to represent
the concept.

referenceTerm.term
[1..1]

UUID Identifies the term identifier which
contains

referenceTerm.relationshipType
[1..1]

UUID Identifies the type of relationship the
concept reference term has to the
concept. Example: narrower-than,
same-as.

name
[0..*]

Name One or more names which can be
displayed to represent the concept.

name.language
[1..1]

String The language code in which the name
value is represented.

name.value
[1..1]

String The value of the name which can be
displayed.

name.phoneticCode
[0..1]

String The phonetic code (for searching) of
the name.

name.phoneticAlgorithm
[1..1]

UUID The identifier of the phonetic
algorithm which can be used to
generate the phonetic code value.

conceptSet
[0..*]

UUID The identifier(s) of concept sets to
which the current concept belongs.

7.4.2.3.4 ReferenceTerm

The reference term resource can be used to create, search, obsolete, and get information related to

reference terms used in the SanteDB system. Reference terms are used to represent concepts on the

wire and are primarily referenced for interoperability reasons.

SanteDB/SanteSuite Design 68

Table 17 - Reference Term

Element Type Description

mnemonic
[1..1]

String A mnemonic which is used to
represent the reference term on the
wire.

codeSystem
[1..1]

UUID Identifies the code system to which
the reference term belongs (example:
ICD10, LOINC, etc.)

name
[0..*]

Name One or more displayable names from
the reference term’s standard. These
display names are used in
interoperability contexts.

name.language
[1..1]

String The ISO language code in which the
value of the name is represented.

name.value
[1..1]

String The value of the reference term name
in the specified language.

name.phoneticCode
[0..1]

String The phonetic code of the name.

name.phoneticAlgorithm
[0..1]

UUID The phonetic algorithm identifier used
to generate the phoneticCode.

7.4.2.3.5 Act

Identifies acts which cannot be classified into one of the concrete act types (observation, substance

administration, etc.).

SanteDB/SanteSuite Design 69

Table 18 - Act

SanteDB/SanteSuite Design 70

Element Type Description

isNegated
[1..1]

Boolean Indicates whether the act which is
represented in the response is a
negation. Example: OPV NOT given.

actTime
[1..1]

DateTime Identifies the time that the act
occurred.

startTime
[0..1]

DateTime Identifies the time when the act
started or is scheduled to start.

stopTime
[0..1]

DateTime Identifies the time when the act
ended or is scheduled to end.

classConcept
[1..1]

UUID Identifies concept which classifies the
act. For example: classifies
observations, administrations, etc.

moodConcept
[1..1]

UUID Identifies the mood of the act. For
example: classifies events from intent
to perform acts.

reasonConcept
[0..1]

UUID Identifies a codified reason as to why
the act took place (or didn’t)

statusConcept
[1..1]

UUID Identifies the codified status of the act
at the current status.

typeConcept
[1..1]

UUID Identifies the type of act. Further
classifies the act (i.e. makes
observation a reaction observation)

identifier
[0..*]

Identifier Provides one or more alternate
identification schemes for the act.

relationship
[0..*]

Relationship Provides one or more relationships
between the current act and other
acts. This is used to link acts together
by encounter.

relationship.target
[1..1]

UUID The target act of the relationship.

relationship.relationshipType
[1..1]

UUID Identifies the type of relationship such
as “component of”, “subject of”, etc.

participation
[0..*]

Participation Provides one ore more links to entities
which participate in the carrying out
of the act.

participation.player
[1..1]

UUID The entity which plays the role in the
act.

participation.participationRole
[1..1]

UUID Identifies the type of participation
such as “performer” or “location”, etc.

participation.quantity
[0..1]

INT Identifies the number of entities
which participated in the act.

extension
[0..*]

Extension One or more extensions which are
used to extend the clinical data
contained in the act.

SanteDB/SanteSuite Design 71

note
[0..*]

Note One or more notes which are used to
provide human readable data related
to an act.

tag
[0..*]

Tag One or more tags which are used to
further classify an act.

7.4.2.3.6 Observation

The observation resource is an HDSI specific observation class which encapsulates the functionality of

the three types of observations for convience. Observation allows a consumer to quickly query any three

of the observation types.

A coded observation represents an observation whose value is a concept. This type of observation is

used whenever an observation is made which can be codified. For example: Observed reaction, severity,

etc.

Table 19 - Coded Observation

Element Type Description

interpretationConcept
[0..1]

UUID A concept which provides an
interpretation of the observation’s
value (High, Low, Nominal, etc.)

value
[1..1]

UUID The identifier of the code which
represents the value of the
observation.

A text observation is used to store an observation whose primary value is textual. These observations

are not intended to be used by processing routines, rather are intended for human consumption.

SanteDB/SanteSuite Design 72

Table 20 - Text Observation

Element Type Description

value
[0..1]

String The textual value of the observation.

Finally, quantity observations are used to convey an observation where the observation value was

obtained by quantitative measurement. For example: weight, height, bmi, etc.

Table 21 - Quantity Observation

Element Type Description

Value
[1..1]

Decimal The numerical value of the
observation.

unitOfMeasure
[1..1]

UUID A concept identifier which indicates
the units of the value measure.

SanteDB/SanteSuite Design 73

7.4.2.3.7 PatientEncounter

Patient encounters are used as a means to convey information related to an encounter which the

patient has with the health system or is intended to occur (in the case of an appointment).

Table 22 - Patient Encounter

Element Type Description

dischargeDisposition
[1..1]

UUID A concept which indicates the method
in which the patient left the
encounter.

7.4.2.3.8 SubstanceAdministration

Substance administrations represent the administration of any substance to a patient in the context of

an encounter. These can include vaccinations, booster shots, EpiPen (anti-histamine) administrations,

etc.

SanteDB/SanteSuite Design 74

Table 23 - Substance Administration

Element Type Description

route
[1..1]

UUID The concept which identifies the route
in which the substance was
administered.

doseUnit
[1..1]

UUID The unit of measure in which the
doseQuantity was administered.

doseQuantity
[1..1]

Decimal The quantity of substance
administered.

doseSequence
[0..1]

Int The sequence of the dose.

7.4.2.3.9 Entity

The entity resource is used to represent entities which cannot be classified in one of the other entity

subclasses (patient, material, etc.).

SanteDB/SanteSuite Design 75

Table 24 - Entity

SanteDB/SanteSuite Design 76

Element Type Description

classConcept
[1..1]

UUID Identifies the classification of the
entity being represented.

determinerConcept
[1..1]

UUID Identifies whether the entity
represents a specific instance of a
thing or a type of thing.

statusConcept
[1..1]

UUID Represents the current status of the
entity (Active, New, Obsolete, etc.)

creationAct
[0..1]

UUID If applicable, links the entity to the
act which created the entity.

typeConcept
[0..1]

UUID Provides a further classification of the
type of entity. For example if the
class of the entity is Place, the type
concept might be “Hospital”

identifier
[0..*]

Identifier When populated, provides a
reference to the external identifiers
which are associated with the entity.

identifier.authority
[1..1]

AssigningAuthority Provides a link to the authority which
has assigned the particular identifier

identifier.authority.domain
[1..1]

String The unique domain name of the
authority which assigned the
identifier.

identifier.value
[1..1]

String The actual value of the external
identifier.

relationship
[0..*]

Entity Relationship Provides one or more links between
this entity and other entities which
are related.

relationship.target
[1..1]

UUID The identifier of the entity to which
this entity is related.

relationship.relationshipType
[1..1]

UUID The concept which classifies the type
of relationship between the two
entities.

relationship.quantity
[0..1]

INT Identifies the number of target
entities involved in the relationship.

telecom
[0..*]

Entity Telecom Used to represent one or more
telecommunications addresses which
the entity can be contacted using.

telecom.use
[1..1]

UUID Classifies the use of the particular
telecom address. (home, work, etc.)

telecom.type
[0..1]

UUID When present, classifies the type of
telecommunications address (fax,
phone, email, etc.)

telecom.value
[1..1]

String Identifies the actual
telecommunications address.

extension
[0..*]

Extension Provides additional data not included
in the core patient resource.

SanteDB/SanteSuite Design 77

name
[0..*]

Entity Name Provides one or more names by
which the entity is known.

name.use
[1..1]

UUID Classifies the use of the name, for
example: official, legal, artist, etc.

name.component
[0..*]

Name Component Represents each part of the name.

name.component.type
[1..1]

UUID Classifies the type of name
component being represented such
as Given or Family.

name.component.value
[1..1]

String The actual value of the name
component.

address
[0..*]

Entity Address One or more addresses for the entity.
An address can be a physical place
(street address), a mailing address
(PO Box), or directions to a place.

address.use
[1..1]

UUID Classifies the use of the address
(example: Postal Address, Physical
Address, etc.)

address.component
[0..*]

Address
Component

One or more components which
make up the total address.

address.component.type
[1..1]

UUID Classifies the type of address
component (street address, city,
postal code, etc.)

address.component.value
[1..1]

String The textual value of the address
component.

note
[0..*]

Entity Note One or more notes about the entity
such as additional observations or
details that a human could
meaningfully consume.

note.author
[1..1]

UUID Identifies the author of the textual
content.

note.text
[1..1]

String The value of the note

note.creationTime
[1..1]

DateTime The time that the note was authored.

7.4.2.3.10 Patient

The patient resource represents a specialization of the person resource which is used to represent data

related to a patient role.

SanteDB/SanteSuite Design 78

Table 25 - Patient

Element Type Description

deceasedDate
[0..1]

DateTime When populated, identifies the date
that the patient died.

deceasedDatePrecision
[0..1]

DatePrecision Identifies the precision of the
deceased date.

multipleBirthOrder
[0..1]

Int When populated, indicates that the
patient was a part of a multiple birth.

genderConcept
[1..1]

UUID Identifies the gender of the patient.

7.4.2.3.11 Provider

A provider represents a specialization of a person which is charged with the delivery of health care

services to patients.

SanteDB/SanteSuite Design 79

Table 26 - Provider

Element Type Description

providerSpecialty
[1..1]

UUID A code indicating the type of provider
represented by the provider entity.
(example: Nurse, CHW, etc.).

7.4.2.3.12 Organization

An organization represents an administrative construct which is used to deliver or organize care,

delivery and manufacture of other entities.

Table 27 - Organization

Element Type Description

SanteDB/SanteSuite Design 80

industryConcept
[1..1]

UUID A code indicating the industry in
which the organization operates.
Examples: supply, hospital, etc.

7.4.2.3.13 Place

A place represents an entity which is a physical location where health delivery services are delivered

such as clinics, hospital, mobile immunization clinics, etc.

Table 28 - Place

Element Type Description

isMobile
[1..1]

Boolean An indicator which identifies whether
the delivery location is a mobile
location.

lat
[0..1]

Float Indicates the latitude of the place.

lng
[0..1]

Float Indicates the longitude the place.

service
[0..*]

Service One or more services which the place
offers.

service.serviceSchedule
[0..1]

Xml An XML representation of the
scheduled of the service availability.

service.serviceConcept
[1..1]

UUID The type of service provided.

SanteDB/SanteSuite Design 81

7.4.2.3.14 Material

A material represents an entity which can be distributed, consumed, packaged, or used. A material can

be a physical material such as a distribution kit, device, etc.

Table 29 - Material

Element Type Description

quantity
[0..1]

Decimal Identifies the quantity of material in a
container or group if populated.

formConcept
[1..1]

UUID Identifies the form of the material. For
example: liquid, gas, boxed, etc.

quantityConcept
[1..1]

UUID Identifies the units of measure for the
material when administered or
consumed.

expiryDate
[0..1]

DateTime The time when the material will expire
or did expire.

isAdministrative
[1..1]

Boolean When true, indicates that the material
is not a consumable and is merely an
administrative construct.

7.4.2.3.15 ManufacturedMaterial

A manufactured material represents a material which is acquired from a manufacturer.

SanteDB/SanteSuite Design 82

Table 30 - Manufactured Material

Element Type Description

lotNumber
[0..1]

UUID The lot number of the manufactured
material.

7.4.2.3.16 Device

A device represents an entity which is physically used. A device entity is differentiated from a

SecurityDevice in that the DeviceEntity is used primarily as information augmenting clinical data

whereas a SecurityDevice contains security identity information.

Table 31 - Device

Element Type Description

SanteDB/SanteSuite Design 83

securityDevice
[0..1]

UUID Identifies the security device which
the device entity represents. If
applicable.

manufacturerModelName
[0..1]

String Identifies the manufacturer name of
the device entity.

operatingSystemName
[0..1]

String Identifies the operating system of the
device entity.

7.4.2.3.17 User

The user entity represents information in the clinical context of the SanteDB data store. It is

differentiated from a SecurityUser in that the user entity is focused more on the clinical data related to a

user (used for provenance) whereas a SecurityUser is primarily concerned with the authentication and

security enforcement.

7.4.2.3.18 Application

The application entity represents information in the clinical context of the SanteDB clinical data store.

Element Type Description

securityApplication
[0..1]

UUID Identifies the SecurityApplication
which the application entity
represents if applicable.

softwareName
[0..1]

String The name of the software package.

versionName
[0..1]

String The name of the version of the
software package.

vendorName
[0..1]

String The name of the vendor which
manufactured the software
application entity.

SanteDB/SanteSuite Design 84

7.4.2.3.19 Bundle

Element Type Description

item
[0..*]

Resource Represents the contents of the bundle
which are the resources being
transported to another system.

offset
[1..1]

Int The offset of the bundle in the case of
a large result set.

count
[1..1]

Int The count of the primary items in the
bundle.

totalResults
[1..1]

Int The total number of primary items in
the bundle.

entryItem
[0..1]

UUID Identifies the entry point in the
bundle when the bundle is used to
package a single result with
referenced items.

SanteDB/SanteSuite Design 85

7.4.2.3.20 ConceptSet

Element Type Description

mnemonic
[1..1]

String A mnemonic which is used to
represent the reference term on the
wire.

7.4.2.4. HTTP Conditional Headers

The HDSI supports the HTTP conditional headers If-Modified-Since and If-None-Match. These headers

control the amount of data sent back when there are no modifications to any data. The If-None-Match

header is either the version key or the key of the last modified object in the case of a bundled query, or

the primary result in the case of the GET operation.

If the “If” condition fails, then the HDS server will respond with an HTTP 304 (not modified).

The HTTP HEAD operation is used to fetch metadata about a particular resource without fetching the

resource itself. When a client sends HTTP head, the HDSI interface will respond with data such as

version-identifier and sequence of the last edited resource or the metadata of the resource in question.

For example, an HTTP HEAD operation on a resource instance would yield the following:

HEAD /Patient/fb00e97a-bdfc-403d-8f62-52f8e6846a16
Authorization: BASIC ZmlkZGxlcjpmaWRkbGVy
Host: demo.openiz.org:8080
If-Modified-Since: Fri, 15 Jul 2016 10:09:39 GMT

HTTP/1.1 200 OK
Content-Length: 0
Server: Microsoft-HTTPAPI/2.0
X-GeneratedOn: 2016-06-22T19:21:30.6871719-04:00
Last-Modified: 2016-06-22T19:21:30.6871719-04:00
ETag: 094941e9-a3db-48b5-862c-bc289bd7f86c

SanteDB/SanteSuite Design 86

7.4.2.5. Bundling Resources

All HDS data contract members are independent and do not include deeply nested data. Rather, each

HDS object contains a reference to other objects via properties identified by UUID. When fetching

and/or querying a record, callers can instruct the HDS to bundle these references into a resource bundle

which contains the specified object.

This pattern is used because it prevents deep nesting and maintains references to data elements even

when JSON is used.

7.4.2.6. Patching Resource

The default behavior of the HDS is to replace an object, in its entirety with the value sent to it. For

example, if a patient exists in the HDS, and a client sends an PUT on the patient resource, the HDS will

perform the necessary actions required to ensure that the HDS patient in its data store matches the

patient resource sent.

This means that the PUT operation is really a replacement (similar to uploading a new copy of a file).

This behavior requires clients to send a complete copy of the resource with modifications to the HDS

which can be troublesome when the client only wishes to update part of a resource.

In order to overcome this, SanteDB’s HDS implements the HTTP PATCH method specified in IETF

RFC5789. This method allows a client to send a delta of changes to be made to a particular object. The

PATCH format is illustrated in , and closely follows the IETF RFC6902 specification.

Element Type Description

SanteDB/SanteSuite Design 87

Id
[1..1]

UUID Uniquely identifies the patch
operation and the patch.

creationTime
[1..1]

DateTime The time at which the patch was
generated.

obsoletionTime
[0..1]

DateTime The time when the patch is no
longer valid.

createdBy
[1..1]

UUID The user which was responsible for
the generation of the patch.

obsoletedBy
[0..1]

UUID When populated, indicates the user
which was responsible for the
obsoletion of the patch.

change/
[1..*]

 Indicates one or more changes
which should be applied to the
target object.

change/@op
[1..1]

PatchOperationType The type of patch operation to be
performed. Add | Remove | Replace
| Test

change/@path
[1..1]

String The target property which is to be
patched.

change/value
[1..1]

Object The value to patch or value to test.

The operations which can be performed are identified in .

Operation Type Description

Test Indicates that the patch operation on the server should test that the value in
@path equals value before continuing the patch operation. Failure of this
assertion will result in a 409.
This operation is included in order for the client to perform a sanity check
before performing subsequent actions.

Add Indicates that the patch operation on the server should add the value
provided in <value> should be added to a collection.

Remove Indicates that the patch operation on the server should remove an item from
the collection whose identifier or other information matches the <value>
element.

Replace Indicates that the patch operation should replace the value currently held in
@path with the value in <value>

The patch operation requires the passing of the If-Match HTTP header. The If-Match header indicates

that the patch should be applied against the specified version of the resource. If If-Match does not

match the current version of the object then a 409 Conflict response is passed back to the client. A client

may override a 409 by issuing a PATCH with the X-Patch-Force header set to true, which instructs the

HDS to ignore the conflict and attempt the patch operation anyway.

SanteDB/SanteSuite Design 88

7.4.2.7. MIME Types / Message Encodings

The HDSI supports both XML and JSON encodings. The control over which encoding is to be used is

performed via the Accept header in the HTTP message. The allowed content types are listed in .

Content-Type Description

application/xml An XML formatted message will be sent or is

included in the body.

application/json A JSON formatted message will be sent or is

included in the body.

application/xml+openiz-patch An XML patch

application/json+sdb-viewmodel A JSON formatted message in the simplified view

model format will be returned or is included in

the body.

7.4.2.8. View Model Content

The HDSI interface, by default, responds back to callers in a method which is optimized to reduce

bandwidth usage. This means that the HDSI will not duplicate data in messages, instead relying on

identifier pointers for data. While this is useful for optimizing transmission to synchronization clients, it

can prove to be quite inconvenient for clients which are seeking to display the contents of the message

directly.

This is the purpose for the application/json+sdb-viewmodel mime type. This mime type indicates that

the view model representation (according to the JavaScript API) is being used. The view model that is

used is controlled by the ?_viewModel= parameter or the X-SanteDB-ViewModel header.

7.4.2.9. Compression

The HDSI interface supports two-way compression for all communications. This means that a client can

not only request compressed data from the HDS but can submit compressed data to the HDS. This

functionality is expected to be useful when mobile clients are disconnected for long periods of time and

are required to submit large amounts of data.

Requesting the HDSI to perform compression on a response requires the use of the Accept-Encoding

header. Submitting compressed data to the HDSI requires the Content-Encoding header.

The HDSI will accept and produce compressed data formats listed in . If accept-encoding is not

understood the X-CompressResponseStream header will be set to “no-known-accept” and

uncompressed data will be sent to the requestor. Additionally if a Content-Encoding is sent to the HDSI

which it cannot process a 400 (Bad Request) response will be sent to the requestor.

Algorithm Content-Encoding Support (Version)

GZIP Compression gzip 0.7 +

Deflate deflate 0.7 +

BZip-2 bzip2 0.9.7 +

LZip / LZMA lzma 0.9.7 +

SanteDB/SanteSuite Design 89

7.4.2.10. Query Parameters

7.4.2.10.1 Element Filters

All query parameters in the HDSI interface are mapped directly to data contract objects. For example, if

a resource contains an element named “createdBy” the filter of the same name will perform a filter of

data by the createdBy.

It is also possible to chain query parameters using a dotted notation. For example, to query by the name

of the user which created a resource one can filter “createdBy.userName”. In this scenario any chained

parameters match the data element name on type. Since createdBy is of type SecurityUser, elements in

SecurityUser can be chained.

7.4.2.10.2 Control Parameters

HDSI queries also provide a series of response control parameters. All control parameters begin with an

underscore.

Parameter Operations Description

_bundle Get, Version Get Instructs the HDSI to bundle resource
references.

_expand Search, History, Get, Version Get Instructs the HDSI service to expand properties
and include them in the result. Using this option
will force the delay-load of properties in the
HDS model.

_all Get, Version Get Instructs the HDSI to expand all properties and
include them in the result. This option forces
the delay load of all data in the HDS model and
can have performance implications.

_since History Instructs the HDSI to only return versions in the
version history which have been created since
the specified version identifier.

_offset Search Instructs the HDSI interface to offset search
results by the specified number of result.

_count Search Instructs the HDSI interface to include only the
indicated number of results in the return
bundle.

_orderBy Search Instructs the HDSI interface to order the result
set by a series of order parameters. The :asc
and :desc qualifiers are added to the query.

7.4.2.10.3 Modifiers

Modifiers are applied to operators of particular type and can be used by consumers to perform simple

filter tasks. The list of modifiers are found in .

Modifier Operator Example

Equality ?a=b ?userName=SYSTEM

Less Than ?a=<b ?creationTime=<2016-01-01

Less Than or
Equal To

?a=<=b ?value=<=6.3

Greater Than ?a=>b ?value=>2

SanteDB/SanteSuite Design 90

Greater Than
or Equal To

?a=>=b ?creationTime=>=2016-01-01

Approximately ?a=~b ?mnemonic=~FOO

Starts With ?a=^b ?mnemonic=^FE

Not ?a=!b ?userName=!smithj

Guard ?a[guard]=b ?name.component[Family].value=Smith

OR ?a[guard|guard]=b ?name.component[Prefix|Suffix].value=MR

Cast ?a@type=b ?participation[Location].player@Place.service.mnemonic=F

Function ?:(function|parameters)value ?identifier.value=:(substr|1,2)203-203-203

7.4.2.10.4 And / Or Semantics

Boolean logic semantics on the HDSI are limited to a simple scheme. If more than one parameter of the

same name appears in the query string, the values are ORed to one another. Unique filter parameters

are ANDed. For example:

 ?createdBy.userName=SYSTEM&mnemonic=~EVN

Equates to any record created by a user with username SYSTEM and having a mnemonic approximately

matching EVN, whereas:

 ?createdBy.userName=SYSTEM&mnemonic=~EVN&mnemonic=~Event

Matches any record created by a user with username SYSTEM having mnemonic approximately

matching EVN or mnemonic approximately matching Event.

7.4.2.10.5 Guard Conditions

There are several times when queries will require filtering on a chained parameter where the query

executor wishes to guard or only filter a specific type of traversal. These guard conditions are used to

select only traversals whose classifiers match the guard condition. For example, to filter on only Patients

whose legal given name is John, the query would be as follows:

/Patient?name[Legal].component[Given].value=John

Here the query guards that only names with NameUse.Mnemonic (the classifier for EntityName)

matching L are filtered and the component having ComponentType.Mnemonic (the classifier for

EntityNameComponent) has a value of GIV. In the query filter builder for the HDSI the actual expression

is as follows:

o => o.Names.Where(guard => (guard.UseConcept.Mnemonic == "Legal")).Any(name =>

name.Component.Where(guard => (guard.TypeConcept.Mnemonic ==

"Given")).Any(component => (component.Value == "John")))

Guard conditions are useful when filtering collections where classifier carries some semantic meaning.

For example: name, addresses, participations, entity relationships, etc.

7.4.2.10.6 Casting

There are several instances where an element type in the HDS data model is bound to an abstract class

or class which is not being requested. For example, a relationship may point to an Entity, however

properties from SubstanceAdministration are desired. To issue a cast, a client uses the @ symbol after

the element name.

SanteDB/SanteSuite Design 91

For example, to find all substance administrations given to a patient born after 2017-01-01, the

following query is used:

 /Act?classConcept.mnemonic=SubstanceAdministration&participation[RecordTarget].player@P

atient.dateOfBirth=>2017-01-01

The type name is the XML schema name of the type being cast to. The query processor will convert this

to a TypeAs expression and it is equivalent to:

 o => o.ClassConcept.Mnemonic == "SubstanceAdministration" && o.Participations.Where(guard

=> guard.ParticipationRole.Mnemonic == "RecordTarget").Any(a => (a.PlayerEntity as

Patient)?.DateOfBirth > new DateTime(2017,01,01))

7.4.3. Report Integration Services Interface(RISI)
The RISI interface is primarily designed to abstract applications from the reporting technology used in an

SanteDB deployment. The RISI exposes data related to reports, and facilitates the execution of reports in

a secure manner.

7.4.3.1. Transport

The RISI interface is very simple and designed solely for the purpose of exposing data for reporting

purposes.

The operations for the RISI are described in .

Resource Operation Description

/datamart GET Gets a list of all datamarts from the warehouse

POST Create a datamart

/datamart/{datamartId}/data GET Execute adhoc query

POST Create warehouse object

/datamart/{datamartId}/data/{objectId} GET Get warehouse object

/datamart/{datamartId}/query GET Get stored queries

POST Create a stored query

/datamart/{datamartId}/query/{queryId} GET Executes a stored query

/datamart/{id} GET Gets a specified datamart

DELETE Delete data mart

/format GET Gets the report formats. Returns a list of report
formats.

POST Creates a report format. The report format to
create.Returns the created report format.

/format/{id} GET Gets a report format by id. The id of the report
format to retrieve.Returns a report format.

DELETE Deletes a report format. The id of the report
format.Returns the report deleted report format.

PUT Updates a report format. The id of the report
format to update.The updated report
format.Returns the update report format.

/report GET Gets a list of report definitions based on a specific
query. Returns a list of report definitions.

SanteDB/SanteSuite Design 92

POST Creates a new report definition. The report
definition to create.Returns the created report
definition.

/report/{id} GET Gets a report definition by id. The id of the report
definition to retrieve.Returns a report definition.

DELETE Deletes a report definition. The id of the report
definition to delete.Returns the deleted report
definition.

PUT Updates a report definition. The id of the report
definition to update.The updated report
definition.Returns the updated report definition.

/report/{id}/format/{format} POST Executes a report. The id of the report.The output
format of the report.The report
parameters.Returns the report in raw format.

/report/{id}/parm GET Gets a list of report parameters. The id of the
report for which to retrieve parameters.Returns a
list of parameters.

/report/{id}/parm/{parameterId}/values GET Gets a list of auto-complete parameters which are
applicable for the specified parameter. The id of
the report.The id of the parameter for which to
retrieve detailed information.Returns an auto
complete source definition of valid parameters
values for a given parameter.

/report/{id}/source GET Gets the report source. The id of the report for
which to retrieve the source.Returns the report
source.

/type GET Gets a list of all report parameter types. Returns a
list of report parameter types.

POST Creates a new parameter type. The parameter
type to create.Returns the created parameter
type.

/type/{id} GET Gets a report parameter by id. The id of the report
parameter to retrieve.Returns a report parameter.

DELETE Deletes a report parameter type. The id of the
report parameter type to delete.Returns the
deleted report parameter type.

PUT Updates a parameter type definition. The id of the
parameter type.The parameter type to
update.Returns the updated parameter type
definition.

7.4.3.2. Response Codes

See 7.4.2.2 for response codes.

7.4.3.3. Compression

The RISI interface supports compression of requests and responses. See 7.4.2.8 for more information.

SanteDB/SanteSuite Design 93

7.4.4. HL7 FHIR
The SanteDB HDS supports the HL7 FHIR standard for the communication of HDS objects to/from the

backend. The implementation of FHIR and restrictions on the SanteDB HDS are descried here in more

detail.

7.4.4.1. Supported Resources

The HL7 FHIR interface exposes the standard conformance resource either via the /Conformance

resource or via an OPTIONS HTTP request on the base url of the FHIR interface. The resources

implemented by the HDS are listed here for completeness. The FHIR concept of “un-delete” is not

currently planned to be supported for the SanteDB HDS.

Resource Operations Description / Restrictions

/Immunization GET The immunization resource exposes
the underlying substance
administrations which have a mood
code of event occurrence. That is to
say, the immunization resource
represents immunizations have
“actually” occurred (either actually
administered or actually not
administered)

/ImmunizationRecommendation GET Gets the immunization proposals from
the forecaster along with the status of
the forecast. This represents
immunizations which were proposed
and for which there are no
fulfillments.

/Patient GET, POST, PUT, DELETE Gets or registers patient resources in
the HDS system. This operation will
result in complete business rules
(including forecasting) occurring on
post and put.

/Practictioner GET Gets practitioners in the SanteDB HDS.
The get operation is supported to
facilitate export from the SanteDB
HDS into other systems. This maps to
the Provider resource in the HDS data
store.

/Organization GET Gets the organizations which are
registered in the SanteDB HDS and
maps to the Organization resource in
the HDS data store.

/Location GET Gets the locations (villages, cities,
regions, etc.) that are registered in the
SanteDB HDS.

/AdverseEvent GET Gets the adverse events (AEFIs)
recorded in the SanteDB HDS. By

SanteDB/SanteSuite Design 94

default this filters to all Acts having
classConcept of Condition.

/AllergyIntolerance GET Gets the allergies and intolerances
recorded in the SanteDB HDS
including food, drug, and
environmental allergies and their
severity.

/Medication GET Gets a list of all medications from
SanteDB HDS. This maps to all
ManufacturedMaterials in the concept
set “medication types”.

/Substance GET Gets a list of all substances from the
SanteDB HDS. This maps to all
Materials in the concept set
“substance types”

/Observation GET Gets a list of all observations (coded,
textual, or quantified) having a type
concept in the concept set VitalSigns.

/MedicationAdministration GET Gets a list of all medication
administrations that are not
immunizations (for example,
supplements)

/Condition GET Gets a list of all problems (coded
observations having type concept in
problem types concept set) recorded
for a patient.

7.4.4.2. Meta Data

All FHIR resources exposed by the SanteDB HDS expose metadata in the HL7 <meta> field. This field

contains the following data:

- The version UUID of the resource returned in the message

- The last updated time of the resource

- The profile http://openiz.org/fhir

- All security policies applied against the object

- All custom Tags attached to the object.

An example of this meta attribute is provided in .

 <meta>
 <versionId value="9f7a3850-e3fc-4d3d-ba42-d6f0a909473b"/>
 <lastUpdated value="2017-07-09T12:52:07.8010+03:00"/>
 <profile value="http://openiz.org/fhir"/>
 <security>
 <system value="http://openiz.org/security/policy"/>
 <code value="1.3.6.1.4.1.33349.3.1.5.9.2.2.3"/>
 </security>
 <tag>
 <system value="http://openiz.org/tags/fhir/hasDuplicateFix"/>
 <code value="True"/>
 </tag>
 </meta>

http://openiz.org/fhir

SanteDB/SanteSuite Design 95

7.4.4.3. Extensions

All extensions attached to the SanteDB HDS object will be exposed via FHIR with the exception of the

extension http://openiz.org/extensions/core/jpegPhoto which is rendered in the photo or image tag of

the resource if available. Naturally, HDS extensions are mapped to their FHIR counterparts listed in .

SanteDB Extension Handler FHIR Extension Value Notes

BinaryExtensionHandler base64Binary The value of the binary extension is
simply serialized verbatim to its FHIR
counterpart.

BooleanExtensionHandler boolean The value is translated to a FHIR Boolean.

DateExtensionHandler dateTime The value is translated to a FHIR
Date/Time object.

DecimalExtensionHandler decimal The value is translated to a FHIR decimal.

DictionaryExtensionHandler base64Binary The dictionary (JSON) value is serialized
as base64binary.

StringExtensionHandler string The string is represented verbatim.

http://openiz.org/extensions/core/jpegPhoto

SanteDB/SanteSuite Design 96

8. Data Architecture

8.1. Conceptual Data Model
This section seeks to describe and discuss the concepts found within the SanteDB data design. It does

not describe the data entities, nor their fields and seeks to provide context to the logical data model

which follows.

The SanteDB data model can be described as a series of conceptual domains. These domains are used to

conceptualize how the entirety of the IZTW data model functions. The logical domains within the

SanteDB data model can be described as:

• Security: Security tables are primarily used for the purpose of securing the SanteDB data and

enforcing of policies. SanteDB’s policy system is described in the solution architecture section of

this document. Security tables also deal with users in roles.

• Clinical: These tables represent the primary way in which clinical data is stored. The SanteDB

clinical data model is a derivation of the HL7® Reference Information Model (RIM). The HL7 RIM

can be described as a series of base classes describing all events as “entities playing roles

participating in acts”.

• Protocol / Workflow: These tables represent metadata that is used by forecasting and DSS tools

to enforce vaccination protocols. Patients are enrolled into a series of protocols or workflows

that can be used to track adherence to best practices.

• Concepts: These tables are used to control the vocabulary used within the SanteDB data model.

SanteDB uses a series of core concepts in the clinical tables and the concept tables permit the

mapping of these internal SanteDB concepts to wire-level codes in HL7® FHIR™, or HL7® CDA™.

8.1.1. Clinical Domain
The clinical domain within SanteDB is loosely based on the HL7 reference information model (RIM). The

SanteDB clinical domain does not represent a holistic implementation of the RIM, however borrows

some of its concepts to represent and organize clinical data.

Figure 10 graphically illustrates how the elements within the clinical domain relate to one another.

Figure 10 - Conceptual Clinical Model

• Entities: An entity represents a person, place, organization, or thing (syringe, antigen,

vaccine, etc.). Entities can be related to one another via an entity relationship such as place

belonging to an organization or series of materials belonging to a vaccination kit.

SanteDB/SanteSuite Design 97

• Roles: Roles represent a type of part an entity plays. For example, a Person entity may play

the role of a provider or a patient.

• Participations: Participations are the link between an act and an entity via a role. A

participation is used to describe how an entity participates in the carrying out of an act.

• Acts: An act represents an action performed. An example of an Act may be an encounter the

patient has with a provider to receive a weight or immunization. Acts may be related to one

another, for example an encounter may fulfill an appointment, or an observation may be a

part of an encounter.

In this context we can represent many different clinical scenarios. In order to make conceptualizing data

elements in the SanteDB persistence store easier, much data documentation leverages an information

model cards as illustrated in Figure 11.

Figure 11 - Sample information model representing Participation

8.1.1.1. Entities

An entity within the SanteDB data model is used to represent a person, place, or thing. Entities

represent the who, which and where aspects of an action. Entities are further classified into several

subclasses illustrated in Figure 12.

Figure 12 - Entity Classes

Entities are further classified by their class code and determiner code. The determiner code of an entity

is responsible from differentiating a type of an entity (i.e. antigen, dose number, material type, etc.) and

an instance or series of instances of an entity (an actual vial of vaccine, a box of syringes, etc.). Most

entities within the SanteDB system are expected to be stored as instances of entities, classes of entities

will primarily be restricted to materials whereby a class of antigens (OPV for example) will have both

SanteDB/SanteSuite Design 98

instances (vials of OPV) and sub-classes of representing dose numbers (OPV0 – OPV3). Provides a

summary of the entity classes and how they are classified in the data model.

Entity Class Class Code Description

Entity ENT An entity is the base class used to represent a
person/place/thing in the SanteDB data model.

Material MAT A material represents a physical thing to which participates
in the delivery of care. For example: a syringe, a box of
vaccine, etc.

Manufactured Material MMAT A manufactured material represents a material which is
manufactured such as diluent, vaccine, syringes, etc.

Place PLC A place represents a physical location where health
services are provided.

Organization ORG An organization represents an administrative structure
which employs providers, operates clinics, etc.

Person PSN A person represents a human being.

Patient PAT Represents a person who receives health services.

Provider PVD Represents a person who provides health services.

User USR Represents a person who actively uses the system.

Device DEV Represents a physical object on which health services data
is entered, stored, etc.

Application APP Represents a piece of software which is used to access,
record or update medical data.

Determiner codes are used to classify whether a tuple in the entity table represents an actual thing or a

classification of things. There are three types of determiner classifications for objects listed in .

Determiner Description Example

Instance The entry in the database represents a one
or more occurrences of an entity.

A patient, a facility, an
organization, etc.

Kind The entry represents a classification of
entities.

A type of material, a type of
organization, a type of device.

Quantified Kind Represents a kind of object which is
quantified such as X number of Y.

A dose of vaccine (5ml, etc.)

Figure 13 represents a sample information model of a kit of BCG vaccine. The model illustrates how a

single tuples in the SanteDB model are related to one another to represent a kit. The material “BCG

Vaccine” is comprised of one dose of “BCG Antigen”, one “Syringe”, and one dose of “BCG Diluent”. A

box of “BCG Vaccine” represents 25 single doses of “BCG Vaccine” (meaning 25 syringes, 25 antigen and

25 diluent). Finally, from this we can order (via instantiation or inheriting a kind) a kit of GSK 5ml BCG

vaccine. This derivation will have the same rules applied (in that this vaccine must have a syringe,

antigen, and diluent.

SanteDB/SanteSuite Design 99

Figure 13 - Representing BCG as a combination of materials

Figure 14 represents a complex scenario of kitting a vaccine and then deriving a specific type of kit. The

relationship between the instantiation and the generic concepts of the material would have a type of

“Manufactured” meaning the “GSK 5 ml BCG” is a manufactured representation of the generic

BCGvaccine.

Figure 14 - Instantiating BCG vaccine kit to Manufactured materials

The SanteDB model also supports more simplistic representation of a “BCG Vaccine” if kits are not

required by the jurisdiction that is implementing SanteDB. Figure 15 illustrates a valid representation of

BCG in a jurisdiction where only the antigen is tracked.

Figure 15 - Simple BCG to manufactured material

8.1.1.1.1 States

Entities in SanteDB also supports the attachment of an entity status.

SanteDB/SanteSuite Design 100

Figure 16 - Entity States

State Description

NEW The entity is a new registration or submission and no business processes
or review has occurred on the entity.

ACTIVE The entity is registered and actively available for use, search, query, etc.

OBSOLETE The entity information is no longer valid and has since been amended,
replaced, or is no longer available.

NULLIFIED The entity was created in error and never existed.

8.1.1.2. Acts

Acts in the SanteDB data model represent actions taken by entities to other entities. In this lens, we can

say that an act represents everything that “happens” to entities. This mechanism of storage allows the

SanteDB data model to adapt to different jurisdictions with relative ease.

There are five different types of acts that are supported by the default SanteDB schema (Figure 17).

Figure 17 - Act classes

• Patient Encounters: Represent an act whereby a patient presents, or is intended to present for

care.

• Observations: Represent an act whereby an entity observes something. Observations can

include codified observations such as diagnoses, textual values such as a free-text description of

an event, or a quantity such as weight or heartrate.

• Substance Administrations: A substance administration is representing an act whereby a

substance, such as a vaccine is administered to a patient.

• Transfer Order: An order is a special type of stock act and represents a request by an entity to

transfer stock from one place to another.

SanteDB/SanteSuite Design 101

• Procedures: A procedure is a type of act in which the physical state of the record target or

target entity is changed.

Acts are classified into one of these four types based upon their ClassConcept code. This dictates what

type of Act the particular tuple in the database represents. Additionally, Acts are classified by Mood via

the MoodConceptId. The mood of an act identifies the mood or method of operation of the act, moods

include:

• Proposal: A proposal to perform the act, typically a forecaster or some automated DSS

process will create acts with this mood code.

• Intent: Represents an intent to perform the act. These represent a human entering an intent

to attend an encounter, or perform an observation.

• Event: Represents an act that actually occurred. This represents an action taken by a

human.

• Request: Represents a request by one human to another human perform the action.

Examples may be requesting a transfer order or requesting an encounter be done (i.e.

referral).

Often time acts are related to one another via the ActRelationship entity. Act relationships are

important, as typically acts cannot be standalone. For example, one cannot simply “Observe” something

without having an encounter. An example of several types of interactions within SanteDB are described

below:

• Patient Presents to receive an Immunization:

In this use case the primary act is a PatientEncounter whereby participants include the clinician

performing the vaccination (performer), the patient (record target), the clinic (service delivery

location). The patient may be weighed prior to receiving the immunization that represents a

component act of type Observation, and the administration of the vaccine represents a

substance administration with relations to one or materials administered (Figure 18).

Figure 18 - Sample Vaccination Encounter model

SanteDB/SanteSuite Design 102

• Scheduling a second dose of an antigen:

In this use case the primary act is a PatientEncounter with mood of Intent (i.e. I intend to have

an encounter) and date in the future. The PatientEncounter may have one or more substance

administrations with mood of Intent that represent the vaccinations that are intended to be

given at the appointment (Figure 19).

Figure 19 - Vaccination Appointment model

• Patient Presents for Appointment:

In this use case, the patient presents for the scheduled appointment. The encounter fulfills

(FLFLS) the appointment request (Figure 20).

Figure 20 - Vaccination appointment fulfilling an appointment

• Forecasted vaccination:

In this use case a decision support system identifies a patient which needs to receive a vaccine.

The forecasting engine may create a PatientEncounter with mood of Proposed that indicates

that a computer system is proposing an action to occur. When the patient presents for their

vaccination the clinician creates a new PatientEncounter with mood of Event that fulfills the

SanteDB/SanteSuite Design 103

PatientEncounter with mood of Proposed (i.e. the clinician is saying “I am acting on your

proposal”).

8.1.1.2.1 States

SanteDB Acts also carry a current state which dictate the status of the act. Act states are idenfieid in

Figure 21.

Figure 21 - Act States

State Description

NEW The act is a new submission and no formal review or rules have been
applied to it.

ACTIVE The act is currently occurring or is ongoing.

COMPLETE The act has completed and no further action is required.

OBSOLETE The act did occur, however the current information has since been
amended, replaced, or otherwise is no longer accurate.

NULLIFIED The act was created in error and never occurred.

8.1.1.3. Templates

SanteDB Acts and Entities can be templated to ease the creation and reuse of common structures. A

template is a particular set of rules and pre-set data elements which are used to perform some use case

with the underlying base type.

For example, weight and height are two separate types of a QuantityObservation. By creating a “weight”

and “height” template, we allow any business processes or user interface elements to understand the

rules for a particular entity. It allows software to understand “what kind” of element it is looking at

without having to guess based on type/class/mood/determiner/etc.

8.2. Logical Data Design
This section seeks to describe and discuss the methodology behind the SanteDB data design and to

describe the logical data design and schema. Note that the logical data design is often different from the

physical schema as the physical schemata are adapted for the restrictions of the RDBMS in which they

operate. The logical data design is also separate from the business data model design though the

concepts are translatable.

8.2.1. Design Notes
This section outlines several design principles which were used in the creation of the SanteDB data

model. Please note that any diagrams are informational, the source of truth are the detailed data

dictionary tables.

SanteDB/SanteSuite Design 104

8.2.1.1. Versioning

All data tables in SanteDB are versioned. This includes everything from display names of concepts,

entities, acts, etc. This versioning allows an administrator to view a record as it was when it was created

by a clinician.

This is important not only for a medical/legal reason, but for understanding why an action was taken

and/or submitted. The versioning of major elements is performed using a few core concepts:

• Object Table: The core table contains the object’s identifier and any immutable attributes of the

object. For example, the Entity table contains the immutable “class code” attribute in the object

table.

• Object Version Table: The object version table contains the object’s versioned attributes. That

is, attributes which may change over the lifetime of the object. Each version is assigned a unique

identifier and a version sequence number. The version table also keeps track of version history

via a replaces column so that versions are linked to one another.

• Associative Tables: All associative tables to a versioned object carry an

EffectiveVersionSequenceId and ObsoleteVersionSequenceId which allow the SanteDB queries

to establish whether a relationship was active at a particular time an action was taken, and also

allows SanteDB to establish the user which was responsible for adding/removing the

association.

Some tables are versioned in a different manner; these tables are typically tables where versioning is

not as important for tracing purposes. These tables typically have a CreationTime/CreatedBy and

ObsoletionTime/ObsoletedBy column and may have a pointer to a previous record that represents an

edit.

The key message is that no UPDATE statements (with very few exceptions for Tags) are, and should

never be, performed on the SanteDB database.

8.2.1.2. Tags and Extensions

Often times there are country specific requirements that cannot be stored in the default SanteDB data

model. The data model has two methods of storing and reproducing such data.

Tags represent version independent, non-structural data associated with an Act or Entity. Tags are often

used for tagging workflow values associated with an Act (such as editing approval process), security tags,

and/or attachments. Tags are primarily used for storing metadata.

Extensions are structural attributes that modify the meaning of an Act or Entity. Extensions differ from

tags in that they add meaning to an entity or act, and thus, are versioned. Extensions can be thought of

as representing data specifically associated with the entity. Examples of extensions include 10-cell

address of a patient, a stock consumption policy of a place. Extensions should be used as a last resort,

when no other mechanism exists to store the data in the natural data model.

8.2.1.3. Constraint Notation

The columns in the logical data model follow a cardinality notation similar to that used by HL7 profiles.

This notation can be described in the format:

[0|1..1|*] (= default value) (~ vocabulary binding) (? (check constraint))

SanteDB/SanteSuite Design 105

For example, gender may be represented as :

Gender

[0..1] = NoInformation ~ AdministrativeGenderCode

A check constraint for obsoletion time may be represented as

ObsoletionTime

[0..1] ?(> CreationTime)

8.2.2. Storage Patterns
Starting with SanteDB version 1.2.x, the software persistence layer supports three primary modes of

storing data to/from the primary data store.

• Resource Storage: This is the classic method of storage. In resource based storage, the data

persistence layer will faithfully store the last copy of the resource presented to it. This is best

suited for situations where SanteDB is being used as a single coherent system (like an EMR or

EIR)

• Merge Storage: This method of storage is introduced in 1.2.0 of SanteDB’s storage engine.

When enabled, the merge storage service will merge changes provided via resource updates

into the master copy of the resource in the data store. This means that multiple sources of

updates are folded into a master record. This method of storage is useful for simple MPI and

SHR solutions.

• Master Data Management (MDM) Storage: This method of storage is allows local copies of a

resource to be maintained by individual suppliers of information. These suppliers have complete

control over their copy of the record and the MDM module synthetically generates a master

record from the local records on demand. This allows for powerful data management, merging,

and unmerging of records.

8.2.2.1. Resource Storage

TODO

8.2.2.2. Merge Storage

By default, SanteDB supports the resource storage mechanism, however there are cases where SanteDB

will act as a central data store rather than a simple resource data repository. To illustrate this, imaging a

SanteDB instance running which receives requests using HL7v2 from two sources.

If this SanteDB instance received a PID segment for patient John Doe, ID #1234^123 and NID #2 from

source 1, under resource storage, a Patient resource is inserted with this data. However, if the same

SanteDB instance received a PID segment for John Doe, ID #4321^321 and NID #2, the SanteDB instance

would replace the existing Patient resource with the new information.

This is expected behavior for a resource data store, however it is not expected behavior for a central

shared repository. The merge storage interface rectifies this. Whenever an update is performed to an

existing patient, the merge storage engine will determine the changes that need to be applied to the

existing record and will append them (append only).

SanteDB/SanteSuite Design 106

To enable merge storage, the MergeStorageDaemon needs to be enabled in the service host’s

configuration. This daemon is controlled using the configuration file as illustrated below:

<santedb.mss>
 <resources>
 <add resource="Patient" matchConfiguration="default" />
 </resources>
</santedb.mss>

Here matchConfiguration is used to determine which existing records in the datastore are to be updated

based on incoming messages. Potential duplicate records are marked as duplicates using the Duplicate

relationship type.

8.2.2.3. Master Data Management (MDM) Storage

One of the biggest improvements of the new SanteDB storage enhancements was the addition of the

master data management (MDM) functionality. In this storage scheme individual records are inserted to

the primary data store. A post-execution trigger is then fired to determine whether a record is a

duplicate of an existing master record, or a new record entirely.

If a record is deemed a new record, a new Entity or Act is created with classification MDM-Master, the

local copy of the record is then linked to the master entity or act with a relationship type of MASTER.

Any other master records which are potential duplicates are related with relationship DUPLICATE.

Figure 22 illustrates an example of these relationships for a definitive match. Here there are two local

copies of the patient John Doe, both point at the synthetic master record, whose content is determined

based on the security principal querying the record at runtime.

Figure 22 - MDM Relationships

MDM storage can be configured on the HDSI server instance only, and simply requires the registration of

the MdmDaemonService in the host’s service list. If you are running multiple copies of the HDSI server it

is strongly recommended that this service daemon be enabled on all application servers.

The daemon service will process the configuration for resources which are to be placed under MDM

storage mechanisms. Below, an example of an MDM configuration for Patients, note that the

matchConfiguration attribute is used to determine the configuration name for the

SanteDB/SanteSuite Design 107

IRecordMatchingService instance, this determines how the MDM service classifies master records

opposed to duplicates.

<santedb.mdm>
 <resources>
 <add resource="Patient" autoMerge="true" matchConfiguration="default" />
 </resources>
</santedb.mdm>

8.2.3. Entity Relationships

Figure 23 - SanteDB Entity Relations

Table 32 - SanteDB Entity Dictionary

Entity Classification Purpose

Entity Clinical:Entity The entity table provides a master list of
all entity data within the data model. This
table is used to store attributes related to
the abstract superclass “Entity”.

EntityVersion Clinical:Entity The entity version table provides data
related to the versioning of entity data
within the SanteDB system. All key entity
attributes (minus classification) are stored
in the entity version table.

EntityTelecommunicationsAddress Clinical:Entity The entity telecommunications address
table provides a 1..n relationship through
which telecommunications addresses

dm Entity Relation

Security::

SecuirtyRolePolicy

Acts::Act

Acts::

ActParticipation

Security::

ActPolicy

Acts::

ActRelationship

Acts::ActVersion

Entities::

EntityAddressComponent

Entities::

ApplicationEntity

Meta::

AssigningAuthority

Entities::

Dev iceEntity

Security::

SecurityDev icePolicy

Acts::

PatientEncounter

Entities::Entity

Entities::

EntityAddress

Entities::

EntityAssociation

Entities::

EntityIdentifier

Entities::

EntityName

Entities::

EntityVersion

Entities::Place

Entities::

PlaceServ ice

Entities::

EntityNameComponent

Acts::

Observ ation

Entities::

Organization

Roles::Patient

Entities::Person

Security::Policy

Acts::

CodedObserv ation

Roles::Prov ider

Security::

SecurityRole

Acts::

SubstanceAdministration

Security::

SecurityUser Security::

SecurityUserRole

Meta::

PhoneticValues

Concepts::

Concept

Concepts::

ConceptVersion

Concepts::

ConceptRelationship
Concepts::

ConceptClass

Concepts::

ConceptRelationshipType

Concepts::

ConceptReferenceTerm

Concepts::

ReferenceTerm

Concepts::

CodeSystem

Concepts::

ReferenceTermDisplayNames

Concepts::

ConceptName

Meta::IdentifierType

Meta::

EntityNameUseEntities::EntityTelecomAddress

Entities::

TelecomAddressType

Entities::

PersonLanguageCommunication

Entities::Material

Entities::

ManufacturedMaterial

Entities::

EntityExtension

Meta::

ExtensionType

Meta::

PhoneticAlgorithmType

Roles::UserEntity

Security::

SecurityDev ice

Entities::

EntityTag

Protocol::

Protocol

Protocol::

ActProtocol

Stock::

StockLedger

Stock::

StockBalance
Entities::

QuantifiedEntityAssociation

Acts::

QuantityObserv ation

Acts::ActTag

Acts::

ActExtension

Acts::

TextObserv ation

Acts::

ActIdentifier

SanteDB/SanteSuite Design 108

(email addresses, phone numbers, fax
numbers, etc.) can be stored and related
to a particular entity version.

TelecommunicationsAddressType Metadata The telecommunications address type
table is used to store data related to the
type of telecommunications addresses
used. This can be configured so that
handlers may “contact” these addresses.

EntityAddress Clinical:Entity The entity address table is used to store
addresses that are related to a particular
entity. These addresses may include
physical addresses, mailing addresses
such a PO Boxes, etc.

EntityAddressComponent Clinical:Entity The entity address component table is
used to store the component pieces of an
entity address. These components may
include the street address, city, village,
zip code, geo-locator, etc. All address
components are phonetically searchable.

EntityName Clinical:Entity The entity name table is used to store 1..n
names related to an entity. An entity
name may be a place name such as
“Good Health Hospital”, a person name
such as “Legal”, “Maiden”, etc.

EntityNameComponent Clinical:Entity The entity name component table is used
to store the components of an entity
name. These may include the given,
family, suffix or prefix portions of a name.

EntityNameUse Metadata The entity name use table is used to store
a master list of allowed uses of an entity
name. This table is also responsible for
ensuring that an appropriate name use is
used in conjunction with the associated
entity. For example, a “Person” entity
name may not use an “Organizational”
name use.

EntityIdentifier Clinical:Entity The entity identifier table is used to store
a list of 1..n identifiers associated with an
entity. An entity identifier can be thought
of in many ways, for example:

- An MRN for a Patient
- A GTIN or UPC for a Material
- An OU name for an Organization
- A license number for a Provider

EntityIdentifierType Metadata The entity identifier type table is used to
identify how an entity identifier is to be
used and selected. An example, a GTIN

SanteDB/SanteSuite Design 109

entity identifier type may not be used
with a Person entity as a Person does not
carry a GTIN.

AssigningAuthority Metadata An assigning authority an a globally
unique domain identifier which qualifies
which system, organization or authority
has the ability to assign new identifiers
within a domain. An example of an
assigning authority may be a system
which generates MRNs, a jurisdictional
EMPI, a global trade organization, etc.

EntityExtension Metadata An entity extension represents a non-
classified, extended field for the entity.
Extension fields are used primarily to
store data related to an entity that does
not belong in the standard SanteDB
datastore. For example, there may be a
jurisdictional requirement to store the
Race or EthnicGroup of a Person.

EntityExtensionType Metadata An entity extension type qualifies the
type of extension represented in the
EntityExtension table. The type identifies
an extension handler responsible for de-
persisting the data.

EntityTag Metadata An entity tag represents a simple
Key/Value pair data that is version-
independent for a particular entity, that is
to say that the updating of the tag does
not produce a new version of the entity.
Tags can be used for things like workflow
tagging, quarantine control, or any other
application specific use.

Person Clinical:Entity The person table is used to store data
related to the Person subclass of the
Entity superclass.

PersonLanguageCommunication Clinical:Role Identifies the languages of
communication in which the person can
be contacted.

Patient Clinical:Role The Patient table is used to store data
related to the Patient subclass of the
Person superclass. The patient table adds
fields for date of birth, multiple birth
order, deceased time, etc.

Provider Clinical:Role The provider role table is used to store
data related to the provider subclass of
the Person superclass.

SanteDB/SanteSuite Design 110

Organization Clincial:Entity An Organization is a table used to store
data related to the Organization subclass
of the Entity superclass. An organization
represents a legal entity, which is not a
person, who has a mandate to deliver
healthcare.

Place Clinical:Entity A Place is a table used to store data
related to a physical place where care is
delivered.

PlaceService Metadata The PlaceService table is used to store
data related to the services available at a
particular place. The services in the scope
of SanteDB may represent immunization
services, weight services, emergency
services, etc.

Material Clinical:Entity The Material table is used to store data
related to the Material subclass of the
Entity superclass. A material represents a
physical thing or supply that is used in the
delivery of care. This can include syringes,
diluents, vaccines, kits, gloves, etc.

ManufacturedMaterial Clinical:Entity A manufactured material represents a
material that can be ordered from a
manufacturer. This includes syringes,
diluents, gloves, etc. This is a
specialization for a Material in that a
material can technically be a self-
assembled group of materials which may
not necessarily be orderable by a
manufacturer (for example: a vaccine kit
which is an administrative material)

EntityRelationship Clinical:Entity The entity association table is used to
associate entities to one another. This can
be used in a variety of ways including

- Linking places to an organization
- Linking materials together in a kit
- Linking persons together, for

example a mother/father of a
patient

- Linking places together in an
administrative hierarchy.

- Linking providers with patients.

ActParticipation Clinical:Participation The ActParticipation associative entity
class is used to associate a particular
version of an act with a version of an
entity participating in the act. Example of

SanteDB/SanteSuite Design 111

participations include : RecordTarget,
Author, Performer, Subject, etc.

Act Clinical:Acts The Act table is used to store the abstract
data related to a particular act.

ActVersion Clinical:Acts The ActVersion table is used to store
abstract data related to a particular point-
in-time version of an Act or subclass of an
act.

ActRelationship Clinical:Acts The ActRelationship table is used to link
two acts together in some way. Examples
of an ActRelationship include fulfillment
(i.e. an encounter fulfills an
appointment), componentization (i.e.
encounter has an observation), etc.

SubstanceAdministration Clinical:Acts The SubstanceAdministration table is
used to store the administration of
substances (like vaccines) to the patient.

Observation Clinical:Acts The Observation table is used to store
additional data related to an observation
that occurs during the course of an
encounter.

QuantityObservation Clinical:Acts The QuantityObservation table is used to
store additional data related to an
observation whose value is a quantity. For
example, an observation of weight, blood
pressure, height, etc.

CodedObservation Clinical:Acts The CodedObservation table is used to
store additional data related to an
observation whose value is a code. For
example, observing the patient has blue
eyes.

TextObservation Clinical:Acts The TextObservation table is used to
store additional data related to
observations which have textual content
such as observation

PatientEncounter Clinical:Acts The PatientEncounter table is used to
store additional data related to an
encounter that the patient has with the
health system. For example, an encounter
may represent a single fulfillment of 6
week vaccinations.

ActTag Metadata The ActTag table represents a series of
version independent metadata tags
applied to the act. These can be
workflow, security or categorization tags.

ActExtension Metadata The ActExtension table represents a
series of extended data elements that can

SanteDB/SanteSuite Design 112

assigned to an act’s version. This can be
to store additional data related to the act
itself not representable in the core data
framework.

StockLedger StockManagement The stock ledger is used to store stock
transactions (like a bank account)
performed against a Place’s stock level. A
stock ledger has a 1..1 mapping to a
deduction, deposit or transfer of
materials between places.

StockBalance StockManagement The stock balance table is used to store a
running total or balance of a material at a
particular place.

StockOrder StockManagement A stock order represents a special type of
Act (a non-clinical act) which is a request
to order stock to/from a place. Mood
codes for this include:

- Propose – When a planning
function proposes an order

- Intend – When an order should
be placed

- Event – When an order has been
placed

QuantifiedActParticipation Clinical:Act A quantified act participation is a
specialization of an act participation that
has the ability to convey the number of
entities participating in the act. In
particular, quantified act participations
represent entities which are classes
instead of instances of entities.

QuantifiedEntityRelationship Clinical:Entity Represents a specialization of an entity
association whereby the container entity
has a specified number of Source in
Target entity.

TemplateDefinition Clinical:Metadata Represents a definition of a template
which is used to track which template a
particular entity or act implements.

8.2.4. SanteDB Concept Model
One of the central design principles in Open Immunize is that of customizable code and valuesets to be

used within the SanteDB system. The concept subset of tables within the datamodel are used to store

the master dictionary of concepts used within the SanteDB system.

There are four major facets of the concept system in SanteDB:

SanteDB/SanteSuite Design 113

• Concept Classes: A concept class is a classification of what a concept represents. Concept classes

are used for validation and organizing the concept dictionary. Examples of a concept class could

be UnitOfMeasure for concept which are units of measure.

• Concepts: A concept is a central idea of an object or attribute of an object within the SanteDB

database. A concept is, technically speaking, an abstract object which describes a real world

thing. For example, the concept of an Arm, or the concept of OPV.

• Reference Terms: A reference term is a wire level representation of a concept. A reference term

represents a manner in which a concept can be represented to another system. For example,

the concept of OPV in the HL7 CVX reference term set is ‘01’.

• Concept Sets: A concept set represents a collection of concept that may be used for a particular

purpose. Concept sets are used to restrict the complete set of concepts within the SanteDB

database to those applicable in a particular scope. For example, an entity classification concept

must be selected from the EntityClass concept set.

Figure 24 illustrates the relationships between the concepts tables found within the SanteDB database.

Figure 24 - SanteDB Concept Table Relations

By default, several concepts are included in the default installation of SanteDB including language codes,

vaccine codes, entity and act classifications, status codes, etc. Additional codes may be added by users

and/or may be customized to their environment.

Table 33 - SanteDB Concept Data Dictionary

Table Column Type Description

dm Concepts

ConceptName

*FK ConceptId: int

*FK EffectiveVersionId: int

*FK ObsoleteVersionId: int

* LanguageCode: varchar(2)

* Name: varchar(50)

* PhoneticCode: varchar(10)

* PhoneticAlgorithm: varchar(256)

*PK ConceptNameId: int

CodeSystem

*PK CodeSystemId: uniqueidentifier = newid()

* Name: varchar(50)

* Oid: varchar(50)

 Authority: varchar(50)

* CreationTime: datetime = CURRENT_TIMESTAMP

 ObsoletionTime: datetime

* CreatedBy: uniqueidentifier

 ObsoletedBy: uniqueidentifier

 ObsoletionReason: text

* Url: varchar(256)

 Version: varchar(50)

Concept

*PK ConceptId: int

* IsSystemConcept: bit = 0

ConceptClass

*PK ConceptClassId: uniqueidentifier = newid()

* Name: varchar(50)

* Mnemonic: varchar(10)

ConceptReferenceTerm

*PK ConceptReferenceTermId: uniqueidentifier = newid()

*FK ConceptId: int

*FK ReferenceTermId: int

*FK RelationshipTypeId: uniqueidentifier

*FK EffectiveVersionId: int

 FK ObsoleteVersionId: int

ConceptRelationship

*PK ConceptRelationshipId: int

*FK SourceConceptId: int

*FK TargetConceptId: int

*FK RelationshipTypeId: uniqueidentifier

*FK EffectiveVersionId: int

 FK ObsoleteVersionId: int

ConceptRelationshipType

*PK ConceptRelationshipType: uniqueidentifier = newid()

* Name: varchar(50)

* Menmonic: varchar(10)

ConceptVersion

*PK ConceptVersionId: int = newid()

*FK ConceptId: int

* CreationTime: datetime = CURRENT_TIMESTAMP

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

 FK ReplacesVersionId: int

*FK ConceptClassId: uniqueidentifier

* SysMnemonic: varchar(50)

ReferenceTerm

*PK ReferenceTermId: int

*FK CodeSystem: uniqueidentifier

* Mnemonic: varchar(50)

ReferenceTermDisplayNames

*FK ReferenceTermId: int

* LanguageCode: varchar(2)

* DisplayName: varchar(50)

* CreationTime: datetime = CURRENT_TIMESTAMP

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

 ObsoletionReason: text

* PhoneticCode: varchar(10)

* PhoneticAlgorithm: varchar(256)

*PK ReferenceTermDisplayNameId: int

SanteDB/SanteSuite Design 114

ConceptClass (None) N/A The concept class table
stores a complete list of
concept classifications.

ConceptClassId
[1..1]

UUID Represents a unique
identifier for the
concept classification.

Name
[1..1]

VARCHAR Represents a human
readable name for the
concept classification.
Example: Class Codes

Mnemonic
[1..1]

VARCHAR Represents a system
mnemonic for the
concept class. The
mnemonic does not
change even if the
human readable Name
column does.

Concept (None) N/A The Concept table
stores the key data
related to a concept.
The Concept table
represents immutable
concept properties that
cannot be changed
once a concept is
created.

ConceptId
[1..1]

UUID A unique identifier for
the concept.

IsSystemConcept
[1..1] = false

BIT An indicator which
identifies whether the
concept is a system
concept (i.e. no further
versions can be
created, cannot be
obsoleted, etc.).

ConceptVersion

(None) N/A The concept version
table is used to store
mutable properties of a
concept. All edits to a
concept’s attributes
result in a new version
being created in the
ConceptVersion table.

ConceptVersionId
[1..1]

UUID A unique identifier for
the concept version.

VersionSequenceId
[1..1]

INT A sequence identifier
for the version which

SanteDB/SanteSuite Design 115

allows for establishing a
time-independent
record of version order.

ConceptId
[1..1]

UUID The concept to which
the version applies.

CreationTime
[1..1]

DATETIME The instant in time
when the concept
version became active
(was created). Should
default to the current
database timestamp.

CreatedBy
[1..1]

UUID The user who was
responsible for the
creation of the version,
or the system user if
the installation process
created the concept
version.

ObsoletionTime
[0..1] ? (> CreationTime)

DATETIME When present,
identifies the time
when the concept
version did become
obsolete. This is used
whenever a new
version is created, the
old version is
obsoleted.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Indicates the user who
was responsible for the
obsoletion of the
record.

ReplacesVersionId
[0..1]

UUID Identifies the concept
version that the current
version of the concept
replaces.

ConceptClassId
[1..1] = Other

UUID Identifies the
classification of the
concept as of the
version tuple.

Mnemonic
[0..1]

VARCHAR A unique mnemonic
used by the system to
lookup the concept.
The system mnemonic
is primarily used for
validation purposes
where a concept’s
identifier does not

SanteDB/SanteSuite Design 116

represent a consistent
identifier across
deployments.

ConceptName

(None) N/A The concept name
table represents a
series of human
readable names for the
concept at a particular
version. This facilitates
searches as well as
translation.

ConceptNameId
[1..1]

UUID A unique identifier for
the concept name

ConceptId
[1..1]

UUID The concept to which
the concept name
applies.

EffectiveVersionSequenceId
[1..1]

UUID The version of the
concept when the
name did become
active.

ObsoleteVersionSequenceId
[0..1]

UUID The version of the
concept when the
concept name was
obsoleted.

Name
[1..1]

VARCHAR The human readable
display name for the
concept.

LanguageCode
[1..1] ~ ISO639-2 = en

CHAR The ISO639-2 language
code for the concept
display name.

PhoneticCode
[0..1]

VARCHAR The phonetic code for
the display name. This
is used for phonetic
“sounds-like” searches
of concepts.

PhoneticAlgorithmId
[0..1] ?(PhoneticCode)

UUID The phonetic algorithm
used to generate the
phonetic code. This
allows deployments to
use METAPHONE,
SOUNDEX or custom
phonetic algorithms
appropriate for the
language used.

ConceptRelationship

(None) N/A The concept
relationship table is
used to link concepts to

SanteDB/SanteSuite Design 117

one another. Concept
relationships can
represent equivalency
between concepts,
parent/child
relationships, etc.

ConceptRelationshipId
[1..1]

UUID The unique identifier
for the relationship.

SourceConceptId
[1..1]

UUID The concept that
represents the source
of the relationship.

TargetConceptId
[1..1]

UUID The concept which
represents the target of
the relationship

EffectiveVerisonId
[1..1]

UUID Identifies the version of
the source concept
where the relationship
did become active.

ObsoleteVersionSequenceId
[0..1]

UUID Identifies the version of
the source concept
where the relationship
is no longer active.

RelationshipTypeId
[1..1]

UUID Identifies the type of
relationship the
concepts have.

ConceptRelationshipType

(None) N/A The concept
relationship type
represents allowed
types of relationships
that a concept can
have.

ConceptRelationshipTypeId
[1..1]

UUID The unique identifier
for the concept
relationship

Name
[1..1]

VARCHAR The human readable
name of the concept
relationship type.

Mnemonic
[1..1]

VARCHAR An invariant value that
represents the type of
relationship typically
used by software
components.

ReferenceTerm

(None) N/A A reference term
represents a wire level
code that can be used

SanteDB/SanteSuite Design 118

 to represent the
concept.

ReferenceTermId
[1..1]

UUID A unique identifier for
the reference term.

CodeSystemId
[1..1]

UUID The code system in
which the reference
term belongs.

Mnemonic
[1..1]

VARCHAR The wire level code
mnemonic for the
reference term.

ConceptReferenceTerm

(None) N/A An associative entity
that links a concept to
one or more reference
terms and indicates the
strength of the map.

ConceptReferenceTermId
[1..1]

UUID A unique identifier for
the concept reference
term map

ConceptId
[1..1]

UUID The concept to which
the reference term is
linked.

EffectiveVersionSequenceId
[1..1]

UUID The version of the
concept where the
reference term map
became effective.

ObsoleteVersionSequenceId
[0..1]

UUID The version of the
concept where the
reference term map
became obsolete.

ReferenceTermId
[1..1]

UUID The reference term
which is associated
with the concept.

RelationshipTypeId
[1..1]

UUID Identifies the
relationship (or
strength) that the
reference term has
with the concept. For
example: SAME_AS,
NARROWER_THAN, etc.

CodeSystem

(None) N/A The code system table
represents a master list
of all code systems
from which a reference
term can be drawn.

CodeSystemId
[1..1]

UUID A unique identifier for
the code system entry.

SanteDB/SanteSuite Design 119

Name
[1..1]

VARCHAR A human readable
name for the code
system. For example:
ICD10

Oid
[1..1]

VARCHAR The object identifier
that identifies the code
system in an
interoperable manner.

Authority
[1..1]

VARCHAR The unique assigning
authority of the
particular code system.
Example CVX or
SNOMEDCT

CreationTime
[1..1]

DATETIME The time when the
code system entry was
created. Default to the
current timestamp in
the RDBMS.

CreatedBy
[1..1]

UUID The user that was
responsible for the
creation of the code
system.

ObsoletionTime
[0..1] ? (>CreationTime)

DATETIME When populated,
indicates the time
when the code system
record is obsolete.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user who
was responsible for
obsoleting the record.

ObsoletionReason
[0..1] ?(ObsoletionReason)

VARCHAR The textual description
as to why the record
was obsoleted.

Url
[1..1]

VARCHAR A URI that uniquely
identifies the code
system. This is primarily
used when exposing
the code system over
REST interfaces.

Version
[0..1]

VARCHAR A textual description of
the version of the code
system that this record
represents.

ReferenceTermDisplayNames (None) N/A Like the ConceptName
table, the reference
term display name
table is used to identify
human readable display

SanteDB/SanteSuite Design 120

names associated with
the reference term.

ReferenceTermDisplayNameId
[1..1]

UUID The unique identifier
for the reference term.

ReferenceTermId
[1..1]

UUID The reference term to
which the display name
applies.

LanguageCode
[1..1] ~ ISO639-2 = en

CHAR The ISO639-2 language
code that identifies the
language in which the
display name is
represented.

DisplayName
[0..1]

VARCHAR The human readable
name for the reference
term.

CreationTime
[1..1]

DATETIME The time when the
display name became
active.

CreatedBy
[1..1]

UUID Identifies the user that
was responsible for the
creation of the
reference term display
name.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When present,
identifies the time
when the record should
no longer be used.

ObsoletedBy
[0..1] ?(CreationTime)

UUID Identifies the user that
was responsible for
obsoleting the display
name.

ObsoletionReason
[0..1] ?(CreationTime)

VARCHAR A textual description as
to why the display
name was obsoleted.

PhoneticCode
[0..1]

VARCHAR Represents a phonetic
code that can be used
in “sounds-like”
queries.

PhoneticAlgorithmId
[0..1] ?(PhoneticCode)

UUID Identifies the phonetic
algorithm that was
used to generate the
phonetic code. This
allows METAPHONE or
SOUNDEX or some
other custom language
appropriate phonetic
algorithm to be used.

SanteDB/SanteSuite Design 121

8.2.5. SanteDB Act Model
The act data model describes the tables and fields required for the tracking of acts in the SanteDB logical

model.

Figure 25 - SanteDB Act Model

SanteDB/SanteSuite Design 122

The data dictionary for the SanteDB act data model is provided in Table 34.

Table 34 - SanteDB Act Data Model

Table Column Type Description

Act (None) N/A The act table is
represents the
immutable attributes of
an act.

ActId
[1..1]

UUID A unique identifier for
the act.

TemplateDefinitionId
[1..1]

UUID Identifies the template
definition that the
particular act
implements.

ClassConceptId
[1..1] ~ ActClass

UUID Identifies a concept
that classifies the act.
This determines the
type of act, for example
an Observation,
PatientEncounter, etc.

MoodConceptId
[1..1] ~ ActMood

UUID Identifies the mood, or
method of the act’s
performance.

ActTag (None) N/A A table for storing tags
related to acts. A tag
represents a version
independent piece of
data attached to a tag.

ActTagId
[1..1]

UUID A unique identifier for
the tag.

ActId
[1..1]

UUID Identifies the act to
which the tag is
applied.

Key
[1..1]

VARCHAR A unique key identifier
for the type of tag. A
tag’s key is used to
convey the type of
data.

Value
[1..1]

VARBINARY Contains the binary
data of the tag.

CreationTime
[1..1]

DATETIME Identifies the time
when the tag became
active, or was created.

CreatedBy
[1..1]

UUID Identifies the user that
was responsible for the
creation of the tag.

SanteDB/SanteSuite Design 123

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When present,
identifies the time that
the tag data is no
longer valid.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user who
obsoleted the act tag.

ActVersion (None) N/A Act events are
versioned. The act
version table is used to
track mutable data.

ActVersionId
[1..1]

UUID A unique identifier for
the version.

VersionSequenceId
[1..1]

INT A sequence identifier
for the version which
allows for a time
independent
mechanism for
establishing version
order.

ActId
[1..1]

UUID Identifies the act to
which the version data
applies.

CreationTime
[1..1]

DATETIME Identifies the time
when the act version
became active (was
created)

CreatedBy
[1..1]

UUID Identifies the user that
was responsible for
creating the version.

ObsoletionTime
[0..1] ? (>CreationTime)

DATETIME When present,
identifies the time
when the version of the
act is no longer active.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user who
was responsible for the
obsoletion of the
version.

NegationInd
[1..1] = false

BIT When present,
indicates that the act’s
value is not true. For
example, when
attempting to convey
that a vaccine was not
given, the negationInd
would be set to true.

TypeConceptId
[0..1]

UUID Identifies the type of
act. This is a type that is

SanteDB/SanteSuite Design 124

a subclass within the
major classification. For
example, if the class is a
substance
administration, the
type concept may
represent an
Immunization.

StatusConceptId
[1..1] ~ActStatus

UUID Identifies the status of
the act as of the
current version.

ActTime
[0..1] ?(ActTime |
ActStartTime | ActStopTime)

DATETIME Identifies the time that
the act did occurred,
should occur.

ActStartTime
[0..1] ?(ActTime |
ActStartTime | ActStopTime)

DATETIME Identifies the start time
of the act.

ActStopTime
[0..1] ?(ActTime |
ActStartTime | ActStopTime)

DATETIME Identifies the stop time
of the act.

ActRelationship (None) N/A The act relationship
table is used to track
the relationship of acts
to one another.

ActRelationshipId
[1..1]

UUID Uniquely identifies the
act relationship.

SourceActId
[1..1]

UUID Identifies the source
act of the relationship.

TargetActId
[1..1]

UUID Identifies the target act
of the relationship.

EffectiveVersionSequenceId
[1..1]

UUID Identifies the version of
the source act where
this relationship did
become active.

ObsoleteVersionSequenceId
[0..1]

UUID Identifies the version of
the source act where
this relationship is no
longer active.

RelationshipTypeConceptId
[1..1] ~ActRelationshipType

UUID Identifies the type of
relationship that the
two acts have to one
another.

ActParticipation (None) N/A The ActParticipation
table is used to track
how entities participate
in a particular act.

SanteDB/SanteSuite Design 125

ActParticipationId
[1..1]

UUID Uniquely identifies the
act participation.

ActId
[1..1]

UUID Identifies the act that
the participation is for.

EffectiveVersionSequenceId
[1..1]

UUID Identifies the version of
the act when the
participation is active.

ObsoleteVersionSequenceId
[0..1]

UUID When present,
identifies the version of
the act when the
participation is no
longer active.

ParticipationRoleConceptId
[1..1] ~ActParticipationType

UUID Qualifies what role the
entity played in the
carrying out of the act.

Quantity
[1..1] = 1

INT Identifies the number
of entities that are
included in the playing
of the role.

ActIdentifier (None) N/A The act identifier table
is used to store
alternate identifiers for
the act. This may
include vaccine event
identifiers, external
order identifiers, etc.

ActIdentifierId
[1..1]

UUID Uniquely identifies the
alternate act identifier.

IdentifierTypeId
[0..1]

UUID Identifies the type of
identifier this particular
identifier instance
represents (order #,
etc.)

AssigningAuthorityId
[1..1]

UUID Identifies the authority
that assigned the
identifier.

IdentifierValue
[1..1]

VARCHAR The actual external
identifier value.

EffectiveVersionSequenceId
[1..1]

UUID Identifies the version of
the act where the
alternate identifier
became active.

ObsoleteVersionSequenceId
[0..1]

UUID When present,
identifies the version of
the act whereby the

SanteDB/SanteSuite Design 126

alternate identifier is
no longer active.

ActExtension (None) N/A The act extension table
is used to store
extensions attached to
acts.

ActExtensionId
[1..1]

UUID A unique identifier for
the act extension.

ExtensionTypeId
[1..1]

UUID Identifies the type of
extension represented.
This includes
information on how the
extension should be
serialized to/from the
ExtensionValue
column.

ExtensionValue
[1..1]

VARBINARY Carries the value of the
extension.

ExtensionDisplay
[1..1]

VARCHAR A human
comprehendible display
value for the extension.

EffectiveVersionSequenceId
[1..1]

UUID Indicates the version of
the act where this
extension became
active.

ObsoleteVersionSequenceId
[0..1]

UUID When present,
indicates the version of
the act where the
extension is no longer
active.

Observation (None) N/A The observation table is
used to store extended
values related to
observation act types.

ActVersionId
[1..1]

UUID Identifies the act
version to which this
extended data applies.

InterpretationConceptId
[0..1] ~ActInterpretation

UUID Identifies the concept
that represents the
interpretation of the
observation.

QuantityObservation (None) N/A The quantity
observation table is
used to store extended
information related to
the observations that
carry quantified values.

SanteDB/SanteSuite Design 127

ActVersionId
[1..1]

UUID Identifies the
observation act version
to which the quantified
observation data
applies.

Quantity
[1..1]

DECIMAL A decimal value that
contains the value of
the observation
quantity.

QuantityPrecision
[1..1]

INT Identifies the precision
of the Quantity field.

UnitOfMeasureConceptId
[1..1] ~UnitOfMeasure

UUID Identifies the concept
that identifies the units
of measurement.

TextObservation (None) N/A The text observation
table is used to store
additional information
related to a text valued
observation.

ActVersionId
[1..1]

UUID Identifies the
observation version id
that this text
observation data is
attached to.

TextValue
[1..1]

TEXT A textual field that
contains the
observation data.

CodedObservation (None) N/A The coded observation
table is used to store
additional data related
to observations that
are coded. Problems
and Allergies would
qualify as coded
observations.

ActVersionId
[1..1]

UUID Identifies the version of
the observation that
this coded observation
value data applies.

ConceptValueId
[1..1]

UUID Identifies the concept
that represents the
value of observation.

SubstanceAdministration

(None) N/A The substance
administration table is
used to store data
related to substance
administrations to a

SanteDB/SanteSuite Design 128

patient. This include
vaccines or any type of
Epupin injections for

ActVersionId
[1..1]

UUID Identifies the act
version to which the
substance
administration data
applies.

RouteConceptId
[0..1] ~RouteConcept

UUID Identifies the concept
that describes the
route that was taken to
administer the
substance. This may be
drawn from the default
route if not supplied.

DoseQuantity
[1..1]

DECIMAL Identifies the dosage
that was given to the
patient.

DoseQuantityPrecision
[1..1]

INT Identifies the precision
of the dose quantity.

DoseUnitConceptId
[1..1] ~UnitOfMeasure

INT Identifies the dose unit
of measure that was
given to the patient.

SequenceId
[0..1]

INT Identifies the sequence
of this dose if it is a part
of a sequence of doses.

PatientEncounter

(None) N/A The patient encounter
table is used to store
additional data related
to an act that
represents a patient
encounter.

ActVersionId
[1..1]

UUID Identifies the act to
which the extended
patient encounter data
applies.

DischargeDispositionConceptId
[0..1] ~DischargeDisposition

UUID Identifies the
disposition in which the
patient left the
encounter.

ActNote (None) N/A The act note table is
used to store notes
associated with an act.

ActNoteId
[1..1]

UUID A unique identifier for
the note.

SanteDB/SanteSuite Design 129

EffectiveVersionSequenceId
[1..1]

UUID The version whereby
the note became
effective

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates the version of
the act where the note
is no longer active.

AuthorEntityId
[1..1]

UUID The identifier of the
entity that wrote the
note.

NoteText
[1..1]

TEXT The textual content of
the note.

Procedure (None) N/A Used to track acts
which alter the physical
state of an entity (i.e.
surgeries, etc.)

ActVersionId
[1..1]

UUID Points to the version of
the Act which this
procedure is describing.

MethodCodeId
[0..1]
~ProcedureTechniqueCode

UUID Identifies the formal
method for performing
the procedure.

ApproachSiteCodeId
[0..1] ~BodySiteOrSystemCode

UUID Identifies the manner in
which the target site
was approached for the
procedure.

TargetSiteCodeId
[0..1] ~BodySiteOrSystemCode

UUID Identifies the body
system/part which was
the target of the
procedure.

8.2.6. SanteDB Security Model
One of the key tenants of the SanteDB immunization management system is privacy and security by

design. To that end, SanteDB’s HDS supports not only external policy enforcement decisions and role

providers, but also provides access to internal policy engines (when external policy decision points are

not available).

Figure 26 illustrates the relationships between the various security sub systems tables found in the

SanteDB data model.

SanteDB/SanteSuite Design 130

Figure 26 - SanteDB Security Model

Describes the data dictionary for the SanteDB security model.

Table Column Type Description

dm Security

Policy

«column»

*PK PolicyId: uniqueidentifier

* PolicyOid: varchar(50)

* Name: varchar(50)

* Handler: varchar(256)

ActPolicy

«column»

*PK ActPolicyId: uniqueidentifier

*FK EffectiveVersionId: numeric(0)

 ObsoleteVersionId: uniqueidentifier

*FK PolicyId: uniqueidentifier

SecurityDev ice

«column»

*PK DeviceId: uniqueidentifier = newId()

* DeviceSecret: varchar(50)

* CreationTime: datetime = CURRENT_TIMESTAMP

 ObsoletionTime: datetime

* CreatedBy: uniqueidentifier

 ObsoletedBy: uniqueidentifier

 ReplacesDeviceId: uniqueidentifier

SecurityDev icePolicy

«column»

*PK DevicePolicyId: int

*FK DeviceId: uniqueidentifier

*FK PolicyId: uniqueidentifier

* PolicyAction: int = 0

SecurityRole

«column»

*PK RoleId: uniqueidentifier = newid()

* Name: varchar(50)

* CreationTime: datetime = CURRENT_TIMESTAMP

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

 ObsoletionReason: varchar(50)

 Description: varchar(50)

SecuirtyRolePolicy

«column»

*PK RolePolicyId: int

*FK RoleId: uniqueidentifier

*FK PolicyId: uniqueidentifier

* PolicyAction: int = 0

SecurityUser

«column»

* UserName: varchar(50)

* PasswordHash: varchar(50)

* SecurityStamp: varchar(50)

* InvalidLoginAttempts: int = 0

*PK UserId: uniqueidentifier = newid()

 UserPhoto: varbinary(max)

* Email: varchar(50)

* EmailConfirmed: bit = 0

* TwoFactorEnabled: bit = 0

* Lockout: datetime

* CreationTime: datetime = CURRENT_TIMESTAMP

*FK CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 FK ObsoletedBy: uniqueidentifier

 ObsoletionReason: varchar(max)

 UpdatedTime: datetime

 FK UpdatedBy: uniqueidentifier

SecurityUserRole

«column»

*pfK UserId: uniqueidentifier

*pfK RoleId: uniqueidentifier

SecurityUserClaim

«column»

*PK ClaimId: uniqueidentifier = newid()

*FK UserId: uniqueidentifier

 ClaimType: nvarchar(max)

 ClaimValue: nvarchar(max)

SecurityUserLogins

«column»

*PK LoginProvider: nvarchar(128)

*PK ProviderKey: nvarchar(128)

*pfK UserId: uniqueidentifier

SecurityApplication

«column»

*PK ApplicationId: uniqueidentifier = newid()

* ApplicationSecret: varchar(50)

* CreationTime: datetime = current_timestamp

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

 ReplacesApplicationId: uniqueidentifier

SecurityApplicationPolicy

«column»

*PK ApplicationPolicyId: uniqueidentifier = newid()

*FK ApplicationId: uniqueidentifier

*FK PolicyId: uniqueidentifier

* PolicyAction: int

SanteDB/SanteSuite Design 131

Policy (None) N/A The policy table is a complete
dictionary of policies that can
be applied to acts within the
SanteDB HDS.

PolicyId
[1..1]

UUID Uniquely identifies the policy
within the SanteDB system.

PolicyOid
[1..1]

VARCHAR A globally unique identifier in
the form of an OID for the
policy.

Name
[1..1]

VARCHAR A human readable name for the
policy.

Handler
[1..1]

VARCHAR An assembly qualified name
(AQN) of an IPolicyHandler
implementation which is
triggered when the policy rule
fires.

SecurityUser (None) N/A The security user table is used
to store a master list of users
that have secured access to the
SanteDB HDS functions.

UserId
[1..1]

UUID A unique identifier for the user.

UserName
[1..1]

VARCHAR A unique identifier for the
security user that a human may
use to access the SanteDB HDS
system.

PasswordHash
[1..1]

VARCHAR A SHA256 hash of the user’s
password.

SecurityStamp
[1..1]

VARCHAR A unique security stamp for the
user account. This can include a
salt for the user password, or
some other security tag for the
user.

InvalidLoginAttempts
[1..1] = 0

INT Identifies the number of times
that a person has attempted to
access the SanteDB HDS with
invalid credentials.

UserPhoto
[0..1]

VARBINAR
Y

An optional photograph for the
user.

Email
[0..1]

VARCHAR Identifies an electronic mail
telecommunications address
that can be used to contact the
user.

EmailConfirmed
[1..1] = False

BIT Indicates whether the email
address of the user has been
confirmed.

SanteDB/SanteSuite Design 132

TwoFactorEnabled
[1..1] = False

BIT Indicates whether the user
account requires two-factor
authentication. The TFA
mechanism is enabled by the
ITwoFactorAuthenticationServic
e implementation.

LockoutTime
[0..1]

DATETIME Indicates the time when the
account is locked out until. A
DateTime.MaxValue indicates
that the account is perminently
locked out.

CreationTime
[1..1]

DATETIME Identifies the time when the
user account was created.

CreatedBy
[1..1]

UUID Identifies the user who was
responsible for the creation of
the security user.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When populated, indicates the
time when the user account did
or will become obsolete.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID The identifier of the user who
was responsible for obsoleting
the record.

ObsoletionReason
[0..1] ?(ObsoletionTime)

VARCHAR Identifies the reason why the
security user was obsoleted.

UpdatedTime
[0..1] ?(>CreationTime)

DATETIME Identifies the last timestamp
that the user record was
updated.

UpdatedBy
[0..1] ?(UpdatedTime)

UUID Identifies the user who was
responsible for the last edit of
the security user.

SecurityUserClaims (None) N/A The security user claims table is
used to store claims associated
with a user account. These
claims can be things like TFA
secrets, refresh tokens, etc.

ClaimId
[1..1]

UUID A unique identifier of the claim

UserId
[1..1]

UUID Identifies the user to which the
claim applies.

ClaimType
[1..1]

VARCHAR Identifies the type or
classification of claim that has
been made.

ClaimValue
[1..1]

VARCHAR Identifies the value of the claim
token

SecurityUserLogins (None) N/A The security user logins table is
used to track external

SanteDB/SanteSuite Design 133

authorization providers
associated with a user account.

LoginProvider
[1..1]

VARCHAR The provider (google,
Microsoft, etc.) which holds the
external credential.

ProviderKey
[1..1]

VARCHAR The key of the user identifier in
the provider system.

UserId
[1..1]

UUID Identifies the user to which the
external login applies.

SecurityRole (None) N/A The security role table is used
to store security (user) roles
that can be used in policy based
decisions.

RoleId
[1..1]

UUID Uniquely identifies the security
role.

Name
[1..1]

VARCHAR A human readable name for the
role.

CreationTime
[1..1]

DATETIME Identifies the moment in time
when the security role was
created.

CreatedBy
[1..1]

UUID Identifies the user who was
responsible for the creation of
the role.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When present, identifies the
date/time when the role
became obsolete.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user who was
responsible for the obsoletion.

ObsoletionReason
[0..1] ?(ObsoletionTime)

VARCHAR Indicates the reason for the
obsoletion of the record.

SecurityUserRole (None) N/A An associative entity table
between a security user and
role.

UserId
[1..1]

UUID Identifies the user of the
association.

RoleId
[1..1]

UUID Identifies the role to which the
association applies.

SecurityRolePolicy (None) N/A The security role policy is an
associative entity table that
links security roles to policies
which can be used in a policy
decision.

RolePolicyId
[1..1]

UUID Uniquely identifies the tuple

RoleId
[1..1]

UUID Identifies the role to which the
security role policy association
applies.

SanteDB/SanteSuite Design 134

PolicyId
[1..1]

UUID Identifies the policy that is
being applied to the role.

Grant
[1..1] = False

INT Indicates the grant level for the
particular policy either deny,
grant or elevate.

CanOverride
[0..1] = True

BIT When true, indicates that when
a policy decision is made, a user
within the role can override the
decision.

SecuritySession (None) N/A Table that stores security
sessions established with the
server.

SessionId
[1..1]

UUID Uniquely identifies the session.

UserId
[0..1]

UUID The user SID which holds the
session.

DeviceId
[0..1]

UUID The device SID that holds the
session.

ApplicationId
[1..1]

UUID The application SID that holds
the session.

NotBefore
[1..1]

DATETIME Identifies the time when the
session becomes valid.

NotAfter
[1..1]

DATETIME Identifies the time that the
session is invalid.

RefreshToken
[1..1]

VARBINAR
Y

Identifies the refresh token that
can be used to refresh the
session.

ActPolicy (None) N/A The ActPolicy table is used to
associate a policy with an act.

ActPolicyId
[1..1]

UUID A unique identifier for the
policy identifier.

ActId
[1..1]

UUID Identifies the act to which the
association applies

EffectiveVersionSequenceI
d
[1..1]

INT Identifies the version of the act
whereby the policy is active.

ObsoleteVersionSequenceI
d
[1..1]

INT Indicates the version of the act
where the policy no longer
applies.

PolicyId
[1..1]

UUID Identifies the policy that is
associated with the act.

EntityPolicy (None) N/A The EntityPolicy table is used to
associate security policies with
entities.

EntityPolicyId
[1..1]

UUID The unique identifier of the
entity policy association.

SanteDB/SanteSuite Design 135

EntityId UUID Identifies the entity to which
the policy is applied.

EffectiveVersionSequenceI
d
[1..1]

INT Identifies the version of the
entity when the policy became
effective.

ObsoleteVersionSequenceI
d
[1..1]

INT Identifies the version of the
entity where the policy is no
longer effective.

PolicyId
[1..1]

UUID Identifies the policy that applies
to the entity.

SecurityDevice (None) N/A The security device table is
used to store data related to an
authorized device that can
access the SanteDB HDS.

DeviceId
[1..1]

UUID Uniquely identifies the device.

DeviceSecret
[1..1]

VARBINAR
Y

A secret that is used to verify
whether the device can
connect.

CreationTime
[1..1]

DATETIME Indicates the time when the
record was created.

CreatedBy
[1..1]

UUID Identifies the user responsible
for the creation of the record.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When present, indicates the
time when the device record
became or will become
obsolete.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user that is
responsible for the obsoletion
of the device.

ReplacesDeviceId
[0..1]

UUID Indicates the old device that
the current device would
replace.

SecurityDevicePolicy (None) N/A An associated entity that links a
security device to a policy.

DevicePolicyId
[1..1]

UUID A unique identifier for the
device policy association.

DeviceId
[1..1]

UUID Identifies the device to which
the association applies.

PolicyId
[1..1]

UUID Indicates the policy to which
the association applies.

IsDeny
[1..1] = False

BIT When true, instructs the
decision engine to deny access
to an act or policy.

SecurityApplication (None) N/A The security application table is
used to store records
associated with an application.

SanteDB/SanteSuite Design 136

ApplicationId
[1..1]

UUID Uniquely identifies the
application.

ApplicationSecret
[1..1]

VARBINAR
Y

A secret that is used by the
application to authenticate
itself.

CreationTime
[1..1]

DATETIME The time when the application
was created.

CreatedBy
[1..1]

UUID The user responsible for
registering the application.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME The time that the application
record did become or will
become obsolete.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Indicates the user that the
obsoleted the record.

ReplacesApplicationId
[0..1]

UUID Identifies the application that
this current version of the
application record replaces.

SecurityApplicationPolic
y

(None) N/A An associated entity that links a
security application to a policy.

ApplicationPolicyId
[1..1]

UUID A unique identifier for the
application policy association.

ApplicationId
[1..1]

UUID Identifies the application to
which the association applies.

PolicyId
[1..1]

UUID Indicates the policy to which
the association applies.

IsDeny
[1..1] = False

BIT When true, instructs the
decision engine to deny access
to an act or policy.

SecurityProvenance (None) N/A The security provenance table
is responsible for storing data
related to the provenance of a
particular version of an object.

ProvenanceId
[1..1]

UUID The unique identifier of the
provenance object.

SessionId
[0..1]

UUID The identity of the session
which was active when the
provenance object was created.

UserId
[0..1]

UUID The identity of the user that
was authenticated when the
provenance object was
established.

ApplicationId
[1..1]

UUID The identity of the application
that was authenticated when
the provenance object was
established.

DeviceId
[0..1]

UUID The identity of the device that
was authentication when the

SanteDB/SanteSuite Design 137

provenance object was
established.

Established
[1..1]

DATETIME The date/time that the
database transaction started
which resulted in the object
being created.

SecurityObjectRef
[0..1]

UUID The identifier of the
user/provenance object on the
client system.

SecurityObjectType
[0..1] ?(U,P)

CHAR The type of object that the
security object reference points
to.

8.2.7. SanteDB Stock Model
Stock management within SanteDB is performed via a series of linkages between entities (Places own

Materials) in a quantity holding the current balance. Any adjustments, orders or transfers are performed

using account management acts.

8.2.8. SanteDB Entity Model
The SanteDB entity model represents a series of tables which are responsible for the tracking of entities

within the SanteDB data model. Entities represent people, places, organizations, things, etc. and are

responsible for participating within acts in some capacity.

Table Column Type Description

Entity (None) N/A The entity table is
responsible for the

dm Entities

Organization

«column»

*PK EntityVersionId: uniqueidentifier

 IndustryConceptId: uniqueidentifier

ApplicationEntity

«column»

*pfK EntityVersionId: uniqueidentifier

* SoftwareName: varchar(50)

 VersionName: varchar(50)

 VendorName: varchar(50)

 ApplicationId: uniqueidentifier

Dev iceEntity

«column»

*pfK EntityVersionId: uniqueidentifier

* ManufacturerModel: varchar(50)

 OperatingSystemName: varchar(50)

*FK DeviceId: uniqueidentifier

Entity

«column»

*PK EntityId: uniqueidentifier

* ClassConceptId: uniqueidentifier

* DeterminerConceptId: uniqueidentifier

EntityAddress

«column»

*PK EntityAddressId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

* AddressUseConceptId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

EntityAddressComponent

«column»

*PK AddressComponentId: uniqueidentifier

*FK Value: varchar(50)

* ComponentTypeConceptId: uniqueidentifier

*FK EntityAddressId: uniqueidentifier

EntityAssociation

«column»

*FK SourceEntityId: uniqueidentifier

*FK TargetEntityId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 ObsoleteVersionId: uniqueidentifier

* AssociationTypeConceptId: uniqueidentifier

*pfK EntityAssociationId: uniqueidentifier

EntityExtension

«column»

*PK ExtensionId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

*FK ExtensionTypeId: uniqueidentifier

* ExtensionValue: varbinary(max)

EntityIdentifier

«column»

*PK EntityIdentifierId: uniqueidentifier

*FK IdentifierTypeId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

*FK AssigningAuthorityId: uniqueidentifier

* IdentifierValue: varchar(50)

EntityName

«column»

*PK EntityNameId: uniqueidentifier

*FK EntityNameUsetId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

EntityNameComponent

«column»

*PK NameComponentId: uniqueidentifier

*FK ValueCode: uniqueidentifier

* NameComponentTypeConceptId: uniqueidentifier

*FK EntityNameId: uniqueidentifier

EntityTag

«column»

*PK EntityTagId: uniqueidentifier

*FK EntityId: uniqueidentifier

* Key: varchar(max)

* Value: varchar(max)

* CreationTime: datetime = CURRENT_TIMESTAMP

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

EntityTelecomAddress

«column»

*PK EntityTelecomId: uniqueidentifier

*FK TelecomAddressType: uniqueidentifier

* TelecomAddress: varchar(256)

* TelecomUseConceptId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

EntityVersion

«column»

*PK EntityVersionId: uniqueidentifier

*FK EntityId: uniqueidentifier

 FK ReplacesVersionId: uniqueidentifier

* StatusConceptId: uniqueidentifier

* CreationActId: uniqueidentifier

* CreationTimestamp: datetime = CURRENT_TIMESTAMP

 ObsoletionTimestamp: datetime

 TypeConceptId: uniqueidentifier

ManufacturedMaterial

«column»

*PK EntityVersionId: uniqueidentifier

* LotNumber: varchar(50)

Material

«column»

*pfK EntityVersionId: uniqueidentifier

 ExpiryTime: date

 FormConceptd: int

 QuantityConceptId: int

* IsKit: bit = 0

 ExpiryTimePrecision: char(1)

QuantifiedEntityAssociation

«column»

*PK EntityAssociationId: uniqueidentifier

* Quantity: int

Person

«column»

*PK EntityVersionId: uniqueidentifier

* DateOfBirth: date

* DateOfBirthPrecision: char(1)

PersonLanguageCommunication

«column»

*PK PersonLanguageCommunicationId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

* LanguageCommunication: varchar(2)

 PreferenceIndicator: bit

Place

«column»

*pfK EntityVersionId: uniqueidentifier

 MobileInd: bit

 Lat: float

 Lng: float

PlaceServ ice

«column»

*PK PlaceServiceId: uniqueidentifier

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

* ServiceConceptId: uniqueidentifier

 ServiceSchedule: xml

EntityNote

«column»

*PK EntityNoteId: uniqueidentifier = newid()

*FK EffectiveVersionId: uniqueidentifier

 FK ObsoleteVersionId: uniqueidentifier

*FK AuthorEntityId: uniqueidentifier

* NoteText: text

Meta::IdentifierType

«column»

*PK IdentifierTypeId: uniqueidentifier = newid()

* IdentifierTypeConceptId: int

* ClassScopeConceptId: int

Meta::AssigningAuthority

«column»

*PK AssigningAuthorityId: uniqueidentifier

* Name: varchar(50)

* Oid: varchar(50)

 HL7CX4: varchar(50)

 Description: text

* CreationTime: datetime = CURRENT_TIMESTAMP

 ObsoleteTime: datetime

SanteDB/SanteSuite Design 138

storage of
immutable
attributes of an
entity.

EntityId
[1..1]

UUID Uniquely identifies
the entity within the
context of the
SanteDB
implementation.

TemplateDefinitionId
[0..1]

UUID Identifies the
template which the
entity instance
implements.

ClassConceptId
[1..1] ~EntityClassConcept

UUID Identifies the
concept that
classifies the entity
by a type. The
classifier is used to
determine “WHAT
TYPE” of entity the
tuple represents
such as a person,
material,
manufactured
material,
organization, place,
etc.

DeterminerConceptId
[1..1] ~EntityDeterminerConcept

UUID Identifies the
concept that
classifies or
determines the type
of entity. This is
either an INSTANCE
or CLASS concept
identifier.

EntityTag (None) N/A The entity tag table
is used to store
version independent
tags associated with
an entity. A tag does
not result in new
versions of the
entity and is used to
track additional data
related to security
and/or workflow
related metadata.

SanteDB/SanteSuite Design 139

EntityTagId
[1..1]

UUID Uniquely identifies
the entity tag.

EntityId
[1..1]

UUID Identifies the entity
to which the tag is
associated.

Key
[1..1]

VARCHAR Qualifies the type of
tag associated with
the entity. That is to
say, type of tag is
represented in the
tuple of the
determiner.

Value
[1..1]

VARCHAR A value that carries
the data associated
with the tag value.

CreationTime
[1..1]

DATETIME Indicates the
date/time at which
time the tag was
created.

CreatedBy
[1..1]

UUID Identifies the user
that was responsible
for the creation of
the tag.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When populated,
indicates the time
when the tag is no
longer associated
with the entity.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user
that was responsible
for obsoleting the
tag.

EntityVersion (None) N/A The entity version
table is used to store
the mutable
attributes of an
entity, that is to say,
any fields associated
with an entity that
may evolve over the
lifespan of the entity
are tracked in this
table.

EntityVersionId
[1..1]

UUID Uniquely identifies
the version of the
entity represented
in the tuple.

SanteDB/SanteSuite Design 140

EntityId
[1..1]

UUID Identifies the entity
to which this version
applies.

ReplacesVersionId
[0..1]

UUID Identifies the
version of the entity
that the current
tuple is responsible
for replacing.

StatusConceptId
[1..1] ~EntityStatusConcept

UUID Identifies the status
of the entity as of
the version
represented in the
tuple.

CreationTime
[1..1]

DATETIME Indicates the time
when the entity was
created.

CreatedBy
[1..1]

UUID Identifies the user
that was responsible
for the creation of
the entity.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When populated,
indicates the time
when the entity
version became
obsolete.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user
that was responsible
for the obsoleting of
the record.

TypeConceptId
[0..1]

UUID Indicates the
concept that
classifies the
subtype of entity.
For example, an
entity may be a
provider; however,
the sub-type may be
a “physiotherapist”.

EntityRelationship (none) N/A The entity
association table is
used to associate
two or more entities
together. An
association is made
between a source
entity and a target
entity.

SanteDB/SanteSuite Design 141

EntityRelationshipId
[1..1]

UUID Uniquely identifies
the entity
association.

SourceEntityId
[1..1]

UUID Identifies the source
of the entity
association.

TargetEntityId
[1..1]

UUID Identifies the target
of the entity
association.

EffectiveVersionSequenceId
[1..1]

UUID Indicates the version
of the source entity
at which time this
entity association
was created or
became effective.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates that the
entity association is
no longer active,
and indicates the
version of the
source entity where
the association
ceased to be
applicable.

RelationshipTypeConceptId
[1..1] ~EntityRelationshipType

UUID Classifies the
relationship
between the two
entities. Can
indicate ownership
roles such as “Place
OWNS Material”, or
relationship “Patient
CHILD OF Person”.

Quantity
[1..1] = 1

INT Indicates the
quantity of target
entities contained
within the source
entity.

EntityNote

(None) N/A The entity note
table is used to store
textual notes related
to an etity.

EntityNoteId
[1..1]

UUID Uniquely identifies
the note.

EffectiveVersionSequenceId
[1..1]

UUID Identifies the
version of the entity

SanteDB/SanteSuite Design 142

to which the note
applies.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates the version
of the entity where
the note is no longer
relevant.

AuthorEntityId
[1..1]

UUID Identifies the entity
that was responsible
for the authoring of
the note.

NoteText
[1..1]

TEXT Indicates the textual
content of the note.

EntityAddress

(None) N/A The entity address
table is used to store
address information
(physical addresses)
related to an entity.

EntityAddressId
[1..1]

UUID Uniquely identifies
the entity address.

EffectiveVersionSequenceId
[1..1]

UUID Identifies the
version of the entity
whereby the
address information
became active.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates the version
of the entity
whereby the
address is no longer
applicable.

AddressUseConceptId
[1..1] ~AddressUseType

UUID Indicates the desired
use of the address.
Examples include
physical visit,
vacation home,
contact, mailing, etc.

EntityAddressComponent

(None) N/A The entity address
component table is
used to store the
address components
associated with a
particular entity
address.

EntityAddressComponentId
[1..1]

UUID Uniquely identifies
the entity address
component.

SanteDB/SanteSuite Design 143

Value
[1..1]

VARCHAR Identifies the value
of the of the address
component

ComponentTypeConceptId
[1..1] ~NameComponentType

UUID Classifies the type of
address component
represented in the
value field. For
example: street
name, city, country,
postal code, etc.

EntityAddressId
[1..1]

UUID Identifies the entity
address to which the
entity address
component applies.

EntityName

(None) N/A The entity name
table is used to store
master list of names
associated with an
entity.

EntityNameId
[1..1]

UUID Uniquely identifies
the entity name.

EntityNameUseId
[1..1]

UUID Classified the
intended use of the
entity name.
Examples: maiden
name, legal name,
license name, artist
name, etc.

EffectiveVersionSequenceId
[1..1]

UUID Identifies the
version of the entity
when this name
became active.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
identifies the
version of the entity
where the name is
no longer active.

EntityNameComponent

(None) N/A The entity name
component table is
responsible for the
storage of name
components that
comprise an entity
name.

NameComponentId
[1..1]

UUID Uniquely identifies
the name
component.

SanteDB/SanteSuite Design 144

ValueId
[1..1]

UUID Indicates the
phonetic value tuple
that stores the name
value.

NameComponentTypeConceptId
[1..1] ~EntityComponentType

UUID Classifies the type of
name component
represented.
Examples: first
name, title, family
name, etc.

EntityNameId
[1..1]

UUID Indicates the entity
name to which the
name component
applies.

EntityIdentifier (None) N/A The entity identifier
is table is
responsible for the
storage of alternate
identifies associated
with the entity.

EntityIdentifierId
[1..1]

UUID Uniquely identifies
the entity identifier.

IdentifierTypeId
[1..1]

UUID Classifies the type of
identifier that is
represented by the
entity identifier.
Examples: business
identifier, mrn,
primary identifier,
etc.

EffectiveVersionSequenceId
[1..1]

UUID Indicates the version
of the entity when
the identifier
became active.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates the version
of the entity where
the identifier is no
longer active.

AssigningAuthorityId
[1..1]

UUID Identifies the
authority that was
responsible for the
assigning of the
identifier.

IdentifierValue
[1..1]

VARCHAR Indicates the value
of the entity
identifier.

SanteDB/SanteSuite Design 145

Place (None) N/A The place table
represents a
specialization of the
Entity table which is
used to represent
physical places such
as clinics, outreach
activity sites, etc.

EntityVersionId
[1..1]

UUID Identifies the
version of the entity
to which the place
data applies.

MobileInd
[1..1] = False

BIT Indicator that is
used to identify that
a place is mobile.

Lat
[0..1]

FLOAT The latitudinal
position of the place
expressed in
degrees latitude.

Lng
[0..1]

FLOAT The longitudinal
position of the place
expressed in
degrees longitude.

PlaceService (None) N/A The place service
table is used to
identify the services
that are provided at
a particular place.
Services may include
stocking, transfer
depots,
immunization.

PlaceServiceId
[1..1]

UUID A unique identifier
for the place service.

EffectiveVersionSequenceId
[1..1]

UUID The version of the
place entity where
the service entry is
active.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates the version
of the place entity
where the service
entry is no longer
valid.

ServiceConceptId
[1..1] ~ServiceType

UUID Indicates a concept
that describes the
service offered.

SanteDB/SanteSuite Design 146

ServiceSchedule
[0..1]

XML An XML expression
of the service
schedule.

ServiceScheduleType
[0..1]

VARCHAR Identifies the type of
data stored in the
service schedule
column (iCal, GTS,
etc.)

ApplicationEntity

(None) N/A The application
entity table is used
to store entity data
related to an
application. An
application is a
software program
that runs on a
device. This differs
from a security
application, in that
an application may
be referenced
clinically without
needing access to
the SanteDB system.
For example: The
patient uses MyPHR

EntityVersionId
[1..1]

UUID Identifies the
version of the entity
to which the
application data
applies.

SoftwareName
[0..1]

VARCHAR Identifies the name
of the software
package (“EMR
Package” is an
example)

VersionName
[0..1]

VARCHAR Identifies the
version of the
software (example:
“1.0”)

VendorName
[0..1]

VARCHAR The name of the
vendor which
distributes the
software application
(example: “ABC
Corp”)

SanteDB/SanteSuite Design 147

ApplicationId
[0..1]

UUID When populated,
links the application
entity to a security
application.

EntityExtension (None) N/A The entity extension
table is used to store
additional, clinically
relevant, versioned
data attached to an
entity that cannot
be stored in the
native data model.

EntityExtensionId
[1..1]

UUID Uniquely identifies
the extension.

EffectiveVersionSequenceId
[1..1]

UUID Indicates the version
of the entity when
the extension data
did become active.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
indicates the version
of the entity where
the extension value
is no longer
applicable.

ExtensionTypeId
[1..1]

UUID Indicates the type,
or handler, for the
extension data.

ExtensionData
[1..1]

VARBINARY Serialized data that
contains the raw
value of the
extension (serialized
and de-serialized by
the handler).

ExtensionDisplay
[1..1]

VARCHAR A textual, human
readable expression
of the extension
value which can be
displayed on
reports, etc.

EntityTelecomAddress

(None) N/A The entity
telecommunications
address table is used
to store data related
to
telecommunications
addresses (email,

SanteDB/SanteSuite Design 148

fax, phone, etc.) for
an entity.

EntityTelecomId
[1..1]

UUID Uniquely identifies
the
telecommunications
address.

TelecomAddressType
[1..1] ~TelecomAddressType

UUID Classifies the type of
address represented
(example: phone,
fax, email, etc.)

TelecomAddress
[1..1]

VARCHAR The value of the
telecommunications
address in RFC-2396
format.

TelecomUseConceptId
[0..1] ~TelecomAddressUse

UUID Identifies the
intended use of the
telecom address.
(Example: home,
work, etc.)

EffectiveVersionSequenceId
[1..1]

UUID Identifies the
version of the entity
whereby the
telecom address
became effective.

ObsoleteVersionSequenceId
[0..1]

UUID When populated,
identifies the
version of the entity
where the telecom
address is no longer
valid.

DeviceEntity

(None) N/A The device table is
used to store clinical
information related
to a physical device.
Like an application
entity, this table is
used to describe the
clinical attributes of
a device used in the
provisioning of care.
Example: Bob’s
Insulin Pump. The
insulin pump itself
may have no
security device as it
doesn’t require
access to SanteDB.

SanteDB/SanteSuite Design 149

EntityVersionId
[1..1]

UUID Indicates the version
of the entity to
which the device
data applies.

ManufacturerModel
[0..1]

VARCHAR Indicates the name
of the manufacturer
of the device.

OperatingSystemName
[0..1]

VARCHAR Indicates the name
of the operating
system installed on
the device.

DeviceId
[0..1]

UUID When populated,
identifies the
security device
associated with the
device entity.

Material

(None) N/A A material
represents a
physical thing
(syringe, drug, etc.)
which participates in
an act or is assigned
to a person.

EntityVersionId
[1..1]

UUID Identifies the
version of the entity
to which the
material data
applies.

ExpiryTime
[1..1]

DATETIME Indicates the time
when the material
will expire.

ExpiryTimePrecision
[1..1]

CHAR Indicates the
precision that the
expiry time has.

FormConceptId
[0..1] ~MaterialForm

UUID Identifies a concept
that denotes the
form that the
material takes.
Examples: capsule,
injection, nebulizer,
etc. For drugs and
vaccines, the form
will imply the route
of administration.

QuantityConceptId
[0..1] ~UnitOfMeasure

UUID Indicates the unit of
measure for a single
unit of the material.

SanteDB/SanteSuite Design 150

Examples: dose, mL,
etc.

Quantity
[0..1] = 1

NUMERIC Indicates the
reference quantity
in UOM. For
example, BCG
MMAT is 5 mL of
BCG Antigen

IsAdministrative
[1..1] = false

BIT An indicator that is
used to identify
whether the
material is a real
material or an
administrative
material for the
purpose of
management.

ManufacturedMaterial

(None) N/A A manufactured
material is a
specialization of a
material that is
manufactured.

EntityVersionId
[1..1]

UUID Indicates the version
of the material to
which the
specialized data
applies.

LotNumber
[1..1]

VARCHAR Indicates the
manufacturer lot for
the material.

Person

(None) N/A Person represents a
specialization of
Entity representing a
person.

EntityVersionId
[1..1]

N/A The version of the
entity to which the
person data applies.

DateOfBirth
[0..1]

DATE Indicates the date
on which the person
entity was born.

DateOfBirthPrecision
[0..1]

CHAR Indicates the
precision of the date
of birth field.

PersonLanguage
Communication

(None) N/A The person language
communication
table is used to store
information related

SanteDB/SanteSuite Design 151

to the person’s
language
preferences. This
can be used by the
user interface to
determine which
language to display,
however is also
clinically relevant to
indicate the
language in which a
patient wishes to
receive
communciations.

PersonLanaugeCommunication
Id
[1..1]

UUID Uniquely identifies
the language of
communication.

EffectiveVersionSequenceId
[1..1]

UUID Indicates the version
of the person entity
whereby the
language of
communication is
effective.

ObsoleteVersionSequenceId
[0..1]

UUID When present,
indicates the version
of the person entity
where the language
of communication is
no longer effective.

LanguageCommunication
[1..1] ~ISO639-2

VARCHAR An ISO-639-2
language code
indicating the
language
preference.

PreferenceIndicator
[0..1] = False

BIT Indicates whether
the person prefers
the language for
communications.

Organization

(None) N/A The organization
table represents a
specialization of an
entity representing a
logical organization.

EntityVersionId
[1..1]

UUID Indicates the version
of the entity to
which the
organization

SanteDB/SanteSuite Design 152

specialization
applies.

IndustryConceptId
[0..1] ~IndustryConcept

UUID Indicates the
industry in which
the organization
operates. Examples:
logistics, healthcare,
etc.

8.2.8.1. Relationships between Entities

There are two types of relationships that can exist between entities (quantified and unquantified). An

unquantified relationship represents a 1:1 relationship between things and merely identifies that two

items are related in some manner. For example, one may say John [Patient] is related to Mary [Person]

by way that Mary is John’s mother.

Quantified relationships are used for expressing when a certain number of entities are related to a

parent. For example, a Box of BCG [Container] contains 25 BCG [Material]. Quantified relationships are

only used to represent per relationships and do not take the quantity UOM into consideration (for that

use the quantity field on the actual Entity). For example, a box of GSK BCG vial of 5 mL may contain 25 5

ml BCG vials, where each BCG vial is 5 ml of BCG. This more complex relationship is illustrated in Figure

27.

Figure 27 - Entity Relationships

Additionally the association is qualified by the role code in which the target plays in the source.

Examples of relationship types are:

Relationship Mnemonic Description

Family Member NextOfKin

Owned Stock OwnedEntity

Personal Relationship PersonalRelationship

Employee Employee

SanteDB/SanteSuite Design 153

Dedicated Location DedicatedServiceDeliveryLocation

Manufactured Product RegulatedProduct

Used Entity Assigned

In the example above. 3M Syringe 5ml is an manufactured material of Syringe, while Syringe is an part of

BCG Dose, BCG Dose is a part for box of BCG and so on.

8.2.9. SanteDB Protocol Model
The SanteDB protocol model is used to track the types of clinical protocols and links between an

encounter and a clinical protocol. Protocols can be expressed in a variety of manners and are adhered to

by their protocol handler. The protocol handler identifies which piece of code should be invoked to

handle the particular workflow.

Protocol handlers are pieces of code which run in the backbone HDS application and may schedule

future events, analyse prior events and execute tasks, etc. Whenever an Act is associated with an Act

protocol any addition, modification, or link made to that Act will trigger the execution of the protocol

handler.

Examples of protocols can include vaccination schedules, appointment scheduling, adverse event

treatment, etc.

The protocol handler and associative entity tables are illustrated in Figure 28 and described in .

SanteDB/SanteSuite Design 154

Figure 28 - SanteDB Protocol Tables

Table Column Type Description

Protocol (None) N/A The protocol table is
used to store discrete
protocols related to
immunization,
reporting, etc.

ProtocolId
[1..1]

UUID Uniquely identifies the
protocol within the
SanteDB data model.

Name
[1..1]

VARCHAR A human readable
name for the protocol.
Example: “BCG
Immunization
Scheduling”

ProtocolDefinition
[0..1]

VARBINARY An implementation
specific definition of
the protocol. This can
be BPMN, RulesML,
JavaScript, etc. The

dm Protocol

ActProtocol

«column»

*pfK ProtocolId: uniqueidentifier

*pfK ActId: int

* IsComplete: bit = 0

 ProtocolState: xml

Protocol

«column»

*PK ProtocolId: uniqueidentifier

* Name: varchar(50)

* AutoStartCriteria: varchar(50)

* ProtocolDefinition: varbinary(max)

* CreationTime: datetime = CURRENT_TIMESTAMP

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

 FK ReplacesProtocolId: uniqueidentifier

 FK ProtocolTypeId: uniqueidentifier

ProtocolHandler

«column»

*PK ProtocolHandlerId: uniqueidentifier

* Name: varchar(256)

* ProtocolHandlerClass: varchar(256)

* ReplacesProtocolHandlerId: uniqueidentifier = 1

* CreationTime: datetime = CURRENT_TIMESTAMP

* CreatedBy: uniqueidentifier

 ObsoletionTime: datetime

 ObsoletedBy: uniqueidentifier

SanteDB/SanteSuite Design 155

protocol definition
must be understood
by the associated
handler.

CreationTime
[1..1]

DATETIME Identifies the time
when the protocol
definition was
created.

CreatedBy
[1..1]

UUID Identifies the user
who was responsible
for the creation of the
protocol definition.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When present,
indicates the time
when the protocol
definition is or was no
longer active.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user
who was responsible
for obsoleting the
protocol.

ReplacesProtocolId
[0..1]

UUID Identifies the protocol
which the current
tuple replaces.

ProtocolHandlerId
[0..1]

UUID Identifies the protocol
handler which should
be used to execute
the protocol.

 OID
[0..1]

VARCHAR Provides the globally
unique object
identifier for the
protocol

ProtocolHandler (None) N/A The protocol handler
table is used maintain
a registration of all
handlers which are
responsible for the
execution of
protocols.

ProtocolHandlerId
[1..1]

UUID Uniquely identifies the
protocol handler.

Name
[1..1]

VARCHAR A human readable
name for the protocol
handler type.

ProtocolHandlerClass
[1..1]

VARCHAR The assembly qualified
name of the handler
which executes the

SanteDB/SanteSuite Design 156

protocol. Must
implement
IProtocolHandler

CreationTime
[1..1]

DATETIME Identifies the time
when the protocol
handler was
registered.

CreatedBy
[1..1]

UUID Identifies the user
which was responsible
for the creation of the
protocol handler.

ObsoletionTime
[0..1] ?(>CreationTime)

DATETIME When present,
identifies the time
when the protocol
handler is no longer
active.

ObsoletedBy
[0..1] ?(ObsoletionTime)

UUID Identifies the user that
was responsible for
the obsoleting of the
protocol handler
entry.

ReplacesProtocolHandlerId
[0..1]

UUID Identifies the protocol
handler registration
that the current tuple
replaces.

ActProtocol (None) N/A The act protocol table
is used to associate a
protocol definition
with an Act. This
association identifies
the “why” an act was
created (i.e. it was
associated with an
protocol)

ProtocolId
[1..1]

UUID Identifies the protocol
definition to which the
association applies.

ActId
[1..1]

UUID Identifies the act
which the protocol is
associated with.

IsComplete
[0..1] = False

BIT Identifies whether the
act completed the
protocol (terminated
it).

ProtocolState
[0..1]

VARBINARY A handler specific
piece of data which
can be used to store

SanteDB/SanteSuite Design 157

application specific
state related to the
instance of the
protocol definition.

8.3. Physical Data Design
Because SanteDB can leverage a variety of data storage mechanisms via the IDataPersistenceService<T>

implementations, all SanteDB plugins and core functions use a business model. IDataPersistenceService

implementations are, therefore, responsible for the conversion of queries and data entering/exiting the

implementation. This mechanism is illustrated in Figure 29.

Figure 29 - Business / Physical Model Flow

The SanteDB business model exposes a series of simpler structures than those of the data structures

listed in the Data Model section of this document.

8.3.1. ADO Providers
SanteDB HDS includes an implementation of a persistence layer which includes support for generic ADO

based databases. This provider uses the ADO.NET wrapper to invoke necessary functions and select data

from tables. In order to leverage the ADO.NET persistence service, the ADO.NET provider must support:

- Limit and offset queries

- Invocation of stored procedures and functions

- Multi-threaded access to the database

Currently SanteDB iCDR works with the following OrmLite data providers:

Database System Invariant

SanteDB/SanteSuite Design 158

PostgreSQL 9.4 – 10.0 npgsql

FirebirdSQL 3.0 fbsql

SQLite 3.3 sqlite

Regardless of the RDBMS system feeding the ADO provider, it must follow the schema specified in this

section.

8.3.2. Patching / Changing Data Schema
Whenever a plugin wishes to make changes to the SanteDB database, they must embed assembly

manifest resources. These resources contain a specific header that will instruct the ADO data service

layer to apply changes to the database.

These changes should register themselves in the database to ensure that duplicate executions of the

update are not executed.

Provides a sample database update script

/**
 * <update id="PATCHID" applyRange="0.2.0.3-0.9.0.3" invariantName="npgsql">
 * <summary>Adds BAD to the type of name uses</summary>
 * <remarks>Fixes issue with locked accounts</remarks>
 * <isInstalled>select ck_patch('PATCHID')</isInstalled>
 * </update>
 */

 BEGIN TRANSACTION ;

 -- DO YOUR UPDATES HERE

SELECT REG_PATCH('PATCHID');

COMMIT;

The patch schema is defined in .

Element / Path Cardinality Description

@id 1..1 Uniquely identifies the update. This should be
a globally unique value.

@applyRange 1..1 Identifies the version range (database version
not software version) that this patch was
designed to work with.

@invariantName 1..1 Identifies the name of the invariant provider
this patch works with.

summary 1..1 Provides a summary of what the patch is
doing.

remarks 0..1 An optional area where you can specify
additional details about the update.

isInstalled 0..1 When specified, overrides the default check
mechanism to ensure the patch can be
applied.

SanteDB/SanteSuite Design 159

8.3.3. Data Schema
The physical schema of the ADO provider is designed such that many different ADO providers can

support the data structures. Because of the limitations on some RDBMS systems, the ADO schema uses

a short-hand for table names. The general guidelines of the shorthand are as follows:

- All objects are suffixed with the database structure they represent.

o TBL = Table entities

o VW = Views

o CDTBL = Code / Lookup Tables

- Names less four characters or less are represented in full (example: NAME or TAG)

- Names which represent a classified object will carry their classification

o Example: Observation table => OBS_TBL

o SubstanceAdminsitration table => SBADM_TBL

- Associative entities carry ASSOC in the name

- Other tables use acronyms, and usually have vowels removed

o Example: Concept Definition table => CD_TBL

o Code System Table => CS_TBL

Additionally, versions can take on three different forms: inherited, versioned and non-versioned.

- Inherited: These types of relationships are directly linked to their base class via a parent version

key. This restricts child classes of versioned tables to be linked via version key. The primary key

of these types of tables always point to the primary key of the parent table.

- Non Versioned: These types of associative table point to their source via a simple key. This

source key is usually either to a versioned item (_vrsn_id) or the non-versioned portion of the

item (_id). Non versioned associations are considered simple joins as the persistence layer will

attempt to join these tables via the primary key relationship.

- Versioned: These types of associative tables have a direct foreign key link to the non-versioned

table which represents their source. Two additional columns (efft_vrsn_seq and obslt_vrsn_seq)

dictate the effective/obsolete versions of that source object when the association was active.

These types of tables will always be loaded according to the following logic:

o id == a.x_id AND a.efft_vrsn_seq <= versionSequence AND (a.obslt_vrsn_seq IS NULL

OR a.obslt_vrsn_seq > versionSequence)

The PostgreSQL provider defines an index on entity id, version sequence and obsolete sequence

as this allows the query planner to create a better query strategy for the associative load.

Each of the sections that follow simply translate the physical data model for ADO based RDBMS

systems to the logical data model. For a complete description of what each table does, refer to

section 8.2.

8.3.3.1. ADO Act Tables

All ADO.NET based implementations of the logical information model implement Act derived tables as

illustrated in .

SanteDB/SanteSuite Design 160

ACT_VRSN_TBL

PK ACT_VRSN_ID

U1 VRSN_SEQ_ID
FK1,I3,I1 ACT_ID
 CRT_UTC
FK7,I4 CRT_PROV_ID
 OBSLT_UTC
FK6,I5 OBSLT_PROV_ID
 OBSLT_RSN
FK2,I6 RPLC_VRSN_ID
 NEG_IND
FK5,I2,I9 TYP_CD_ID
FK4,I8 STS_CD_ID
FK3,I7 RSN_CD_ID
 ACT_UTC
 ACT_START_UTC
 ACT_STOP_UTC

ACT_REL_TBL

PK REL_ID

FK1,I7,I1 SRC_ACT_ID
FK2,I8,I2 TRG_ACT_ID
FK3,I4,I3 EFFT_VRSN_SEQ_ID
FK4,I5,I3 OBSLT_VRSN_SEQ_ID
FK5,I6 REL_TYP_CD_ID

ACT_ID_TBL

PK ACT_ID_ID

FK5,I6 ID_TYP_ID
FK1,I1,I3 ACT_ID
FK3,I5,I2 EFFT_VRSN_SEQ_ID
FK2,I7,I2 OBSLT_VRSN_SEQ_ID
FK4,I4 AUT_ID
 ID_VAL

TXT_OBS_TBL

PK,FK1,I1 ACT_VRSN_ID

 OBS_VAL

ACT_TBL

PK ACT_ID

FK3,I4 TPL_ID
FK2,I1,I2 CLS_CD_ID
FK1,I3 MOD_CD_ID

ACT_POL_ASSOC_TBL

PK SEC_POL_INST_ID

FK1,I3 ACT_ID
FK2,I4,I2 EFFT_VRSN_SEQ_ID
FK3,I5,I2 OBSLT_VRSN_SEQ_ID
FK4,I1,I6 POL_ID

OBS_TBL

PK,FK1,I2 ACT_VRSN_ID

FK2,I3 INT_CD_ID
I1 VAL_TYP

ACT_NOTE_TBL

PK NOTE_ID

FK1,I1,I3 ACT_ID
FK3,I5,I2 EFFT_VRSN_SEQ_ID
FK2,I2,I6 OBSLT_VRSN_SEQ_ID
FK4,I4 AUTH_ENT_ID
 NOTE_TXT

CNTRL_ACT_TBL

PK,FK1,I1 ACT_VRSN_ID

ACT_PROTO_ASSOC_TBL

PK,FK2,I3 PROTO_ID
PK,FK1,I2,I1 ACT_ID

 SEQ
 IS_COMPL
 STATE_DAT

SUB_ADM_TBL

PK,FK1,I1 ACT_VRSN_ID

FK3,I4 STE_CD_ID
FK2,I3 RTE_CD_ID
 DOS_QTY
FK4,I2 DOS_UNT_CD_ID
 SEQ_ID

QTY_OBS_TBL

PK,FK2,I1 ACT_VRSN_ID

 QTY
 QTY_PRC
FK1,I2 UOM_CD_ID

PROC_TBL

PK,FK1,I4 ACT_VRSN_ID

FK4,I2 MTH_CD_ID
FK2,I1 APR_STE_CD_ID
FK3,I3 TRG_STE_CD_ID

ACT_TAG_TBL

PK TAG_ID

FK1,I3,I1 ACT_ID
I2 TAG_NAME
 TAG_VALUE
 CRT_UTC
FK3,I4 CRT_PROV_ID
 OBSLT_UTC
FK2,I5 OBSLT_PROV_ID

ACT_PTCPT_TBL

PK ACT_PTCPT_ID

FK5,I3,I10,I4 ENT_ID
FK1,I2,I1,I8 ACT_ID
FK2,I9,I7 EFFT_VRSN_SEQ_ID
FK3,I7,I11 OBSLT_VRSN_SEQ_ID
 QTY
FK4,I12,I2,I6,I4,I5 ROL_CD_ID
 PTCPT_SEQ_ID

CD_OBS_TBL

PK,FK2,I1 ACT_VRSN_ID

FK1,I2 VAL_CD_ID

PAT_ENC_TBL

PK,FK1,I1 ACT_VRSN_ID

FK2,I2 DSCH_DSP_CD_ID

Figure 30 - ADO.NET Act Derived Tables

Table Implements Description

act_tbl Act This table is used to store the
non-versioned aspects of an act.
These are things that are not
supposed to change over the
lifespan of an act

act_vrsn_tbl Act (Versions) This table is used to store the
versioned portions of an act.
The version sequence column
should be a sequence which
increments for each tuple (at
minimum) or each new version
of an object (best option)

act_id_tbl Act Identifiers This is an associative table
which is used to store identifiers
by which an act is referenced
externally.

act_ext_tbl Act Extensions Extensions table.

SanteDB/SanteSuite Design 161

act_proto_tbl Act Protocols Act protocol implementation
table.

act_ptcpt_tbl Act Participation Act participation table (links
acts to entities)

act_tag Act Tags Act tags table

act_ext_tbl Act Extensions Act extensions table (value
should be a binary array or
BLOB)

act_note_tbl Act Notes Act notes

act_pol_assoc_tbl Act Policies Policies which apply to the act.

act_rel_tbl Act Relationships Relationships table. Note that
effective/obsolete sequence
columns refer to the source act.

sub_adm_tbl Substance Administrations Substance administration child
table which is linked directly to
the act table.

obs_tbl Observation Observation child table which is
linked to the act table.

qty_obs_tbl Quantity Observations Quantity Observation table
which is linked with the
observation table.

txt_obs_tbl Text Observations Text observations table which is
linked with the observation
table.

cd_obs_tbl Coded Observations Coded observations table which
is linked to the observation
table.

pat_enc_tbl Patient Encounters Patient encounters table which
is linked to the act table.

proc_tbl Procedures Procedures tablet which is
linked to the act table.

SanteDB/SanteSuite Design 162

8.3.3.2. ADO Entity Tables

ENT_VRSN_TBL

PK ENT_VRSN_ID

U1 VRSN_SEQ_ID
FK4,I1,I5 ENT_ID
FK5,I7 RPLC_VRSN_ID
FK2,I8,I2 STS_CD_ID
FK3,I9 TYP_CD_ID
 CRT_UTC
FK7,I4 CRT_PROV_ID
 OBSLT_UTC
FK6,I6 OBSLT_PROV_ID
FK1,I3 CRT_ACT_ID

ENT_NAME_CMP_TBL

PK CMP_ID

FK1,I5 TYP_CD_ID
FK3,I2,I4 VAL_SEQ_ID
FK2,I3,I1 NAME_ID
 CMP_SEQ

PSN_TBL

PK,FK1,I1 ENT_VRSN_ID

 DOB
 DOB_PREC

ENT_TAG_TBL

PK TAG_ID

FK1,I1,I3 ENT_ID
 TAG_NAME
 TAG_VALUE
 CRT_UTC
FK3,I2 CRT_PROV_ID
 OBSLT_UTC
FK2,I4 OBSLT_PROV_ID

ENT_ADDR_TBL

PK ADDR_ID

FK2,I1,I5 ENT_ID
FK4,I4,I2 EFFT_VRSN_SEQ_ID
FK3,I2,I6 OBSLT_VRSN_SEQ_ID
FK1,I3 USE_CD_ID

APP_ENT_TBL

PK,FK1,I2 ENT_VRSN_ID

FK2,I1,I3 SEC_APP_ID
 SOFT_NAME
 VER_NAME
 VND_NAME

PSN_LNG_TBL

PK LNG_ID

FK1,I1,I4 ENT_ID
FK2,I2,I3 EFFT_VRSN_SEQ_ID
FK3,I5,I2 OBSLT_VRSN_SEQ_ID
 LNG_CS
 PREF_IND

ENT_NAME_TBL

PK NAME_ID

FK2,I4,I1 ENT_ID
FK4,I2,I3 EFFT_VRSN_SEQ_ID
FK3,I5,I2 OBSLT_VRSN_SEQ_ID
FK1,I6 USE_CD_ID

ENT_POL_ASSOC_TBL

PK SEC_POL_INST_ID

FK1,I4 ENT_ID
FK2,I2,I3 EFFT_VRSN_SEQ_ID
FK3,I2,I5 OBSLT_VRSN_SEQ_ID
FK4,I6,I1 POL_ID

ENT_TEL_TBL

PK TEL_ID

FK3,I1,I5 ENT_ID
FK2,I7 TYP_CD_ID
FK1,I8 USE_CD_ID
I2 TEL_VAL
FK4,I3,I4 EFFT_VRSN_SEQ_ID
FK5,I6,I3 OBSLT_VRSN_SEQ_ID

ENT_ID_TBL

PK ENT_ID_ID

FK2,I1,I5 ENT_ID
 ID_TYP_ID
FK4,I2,U1,I4 EFFT_VRSN_SEQ_ID
FK3,I2,I6 OBSLT_VRSN_SEQ_ID
FK1,I3,U1 AUT_ID
U1 ID_VAL

PLC_TBL

PK,FK1,I1 ENT_VRSN_ID

 MOB_IND
 LAT
 LNG

ENT_EXT_TBL

PK ENT_EXT_ID

FK1,I4,I1 ENT_ID
FK4,I6 EXT_TYP_ID
 EXT_VAL
 EXT_DISP
FK2,I2,I3 EFFT_VRSN_SEQ_ID
FK3,I5,I2 OBSLT_VRSN_SEQ_ID

USR_ENT_TBL

PK,FK1,I3 ENT_VRSN_ID

FK2,I1,I2 SEC_USR_ID

EXT_TYP_TBL

PK EXT_TYP_ID

 HDLR_CLS
U1 EXT_NAME
 IS_ACTIVE
 CRT_UTC
FK3,I1 CRT_PROV_ID
 UPD_UTC
FK1,I3 UPD_PROV_ID
 OBSLT_UTC
FK2,I2 OBSLT_PROV_ID

ENT_TBL

PK ENT_ID

FK3,I4 TPL_ID
FK2,I1,I2 CLS_CD_ID
FK1,I3 DTR_CD_ID

ENT_NOTE_TBL

PK NOTE_ID

FK1,I1,I5 ENT_ID
FK4,I2,I4 EFFT_VRSN_SEQ_ID
FK3,I2,I6 OBSLT_VRSN_SEQ_ID
FK2,I3 AUTH_ENT_ID
 NOTE_TXT

PAT_TBL

PK,FK7,I3 ENT_VRSN_ID

FK2,I4 GNDR_CD_ID
 DCSD_UTC
 DCSD_PREC
 MB_ORD
FK1,I7 MRTL_STS_CD_ID
FK6,I1 EDU_LVL_CD_ID
FK4,I5 LVN_ARG_CD_ID
FK3,I6 RLGN_CD_ID
FK5,I2 ETH_GRP_CD_ID

MMAT_TBL

PK,FK1,I2 ENT_VRSN_ID

I1 LOT_NO

ENT_REL_TBL

PK ENT_REL_ID

FK2,I1,I8 SRC_ENT_ID
FK3,I3,I9 TRG_ENT_ID
FK4,I4,I5 EFFT_VRSN_SEQ_ID
FK5,I6,I4 OBSLT_VRSN_SEQ_ID
FK1,I7,I2 REL_TYP_CD_ID
 QTY

ENT_ADDR_CMP_VAL_TBL

PK VAL_SEQ_ID

I1 VAL

DEV_ENT_TBL

PK,FK1,I2 ENT_VRSN_ID

FK2,I1,I3 SEC_DEV_ID
 MNF_NAME
 OS_NAME

PLC_SVC_TBL

PK SVC_ID

FK2,I3 ENT_ID
FK3,I2 EFFT_VRSN_SEQ_ID
FK4,I4 OBSLT_VRSN_SEQ_ID
FK1,I1 SVC_CD_ID
 SCHDL

PVDR_TBL

PK,FK2,I1 ENT_VRSN_ID

FK1,I2 SPEC_CD_ID

MAT_TBL

PK,FK3,I1 ENT_VRSN_ID

 EXP_UTC
FK1,I2 FRM_CD_ID
 QTY
FK2,I3 QTY_CD_ID
 IS_ADM

ENT_ADDR_CMP_TBL

PK CMP_ID

FK1,I5,I2 TYP_CD_ID
FK2,I6,I3 VAL_SEQ_ID
FK3,I4,I1 ADDR_ID

ORG_TBL

PK,FK2,I1 ENT_VRSN_ID

FK1,I2 IND_CD_ID

Table Implements Description

app_ent_tbl Application Entity This table is used to describe
the clinical attributes of an
application such as vendor,
version etc. This differs from the
security definition of an
application. A security
application may exist without a
clinical application existing.

dev_ent_tbl Device Entity This table is used to describe
the clinical attributes of a
device. For example an insulin
pump. Like an application, a
clinical device may not be a
security device or vice versa.
For example when describing an

SanteDB/SanteSuite Design 163

event in which a device was
involved , but that device does
not need access to the system.

ent_addr_cmp_tbl Entity Address Component This table is used to store entity
address components. In order
to normalize addresses, the
values of the addresses
themselves are not stored in
this table, rather, stored in a
unique datatable.

ent_addr_cmp_val_tbl N/A This table stores the unique
values of all address
components found in the
SanteDB system.

ent_addr_tbl Entity Address Stores information related to an
entity’s physical, mailing or
other postal addresses

ent_ext_tbl Entity Extension Stores the data related to entity
extensions. Entity extensions
are versioned, additional values
for a particular entity.

ent_id_tbl Entity Identifier The entity identifier table is
used to store alternate, external
identifiers associated with a
particular entity

ent_name_cmp_tbl Entity Name Component The entity name component
table is used to store the
individual components (family,
given, prefix, suffix) of an
entity’s name.

ent_name_tbl Entity Name The entity name table is used to
store the names associated with
a particular entity. For example,
a patient may have a married
and maiden name.

ent_note_tbl Entity Notes The entity note table is used to
store freetext notes about a
patient.

ent_rel_tbl Entity Relationship Entity relationships are
relationships between one or
more entities with one another.
For example, a service delivery
location may have one or more
employees.

ent_tag_tbl Entity Tags Entity tags are non-versioned
extensions of an entity. That is
their value can change however

SanteDB/SanteSuite Design 164

changes are not tracked over
time.

ent_tbl Entity Represents a non-versioned
parts of the core entity such as
class, determiner, etc.

ent_tel_tbl Entity Telecom Addresses Stores telecommunications
addresses related to the entity
and their associated type
(phone, email, etc) and use
(work, home, mobile, etc.)

ent_vrsn_tbl Entity Versions This table is used to store the
data which can change over
time for an entity such as
status, additional classifier, etc.

mat_tbl Material This table is used to store
information related to
materials.

mmat_tbl Manufactured Materials This table is used to store
information related to
manufactured materials.

org_tbl Organization This table is used to store
information related to
organizations, which are
groupings of people, places for
administrative purposes.

pat_tbl Patient This table is used to store
information related to patients,
or those who are receiving care.

plc_svc_tbl Place Services This table is used to store
information related to the
services which occur at a
particular place.

plc_tbl Place This table is used to store
information about a physical
place. In Open IZ places can
represent delivery locations
(hospitals, clinics, etc.) or
administrative units (states,
cities, etc.)

psn_lng_tbl Person Languages This table is used to store
information related to the
languages which a person
(including patients) speak.

psn_tbl Person This table is used to store
information related to persons
(including patients and
providers).

SanteDB/SanteSuite Design 165

pvdr_tbl Provider This table is used to store
information related to providers
(persons who deliver care).

usr_ent_tbl User Entity This table is used to link the
security subsystem for users to
the clinical subsystem of
entities (as entities are the ones
who participate in Acts rather
than Security Users).

8.3.3.3. ADO Security Tables

SEC_USR_TBL

PK USR_ID

FK4,I5 CLS_ID
I1 USR_NAME
 EMAIL
 EMAIL_CNF
 PHN_NUM
 PHN_CNF
 TFA_ENABLED
 LOCKED
I1 PASSWD
 SEC_STMP
 FAIL_LOGIN
 LAST_LOGIN_UTC
 CRT_UTC
FK3,I2 CRT_PROV_ID
 OBSLT_UTC
FK2,I3 OBSLT_PROV_ID
 UPD_UTC
FK1,I4 UPD_PROV_ID

SEC_PROV_TBL

PK PROV_ID

FK3,I3 USR_ID
FK2,I2 DEV_ID
FK1,I1 APP_ID
 SES_ID
 EST_UTC
 EXT_ID
 EXT_TYP

SEC_ROL_POL_ASSOC_TBL

PK SEC_POL_INST_ID

FK2,U1,I4,I1 ROL_ID
FK1,I3,U1,I2 POL_ID
 POL_ACT

SEC_DEV_TBL

PK DEV_ID

U2 DEV_SCRT
U1 DEV_PUB_ID
 LOCKED
 FAIL_AUTH
 LAST_AUTH_UTC
 CRT_UTC
FK4,I1 CRT_PROV_ID
 UPD_UTC
FK2,I4 UPD_PROV_ID
 OBSLT_UTC
FK3,I2 OBSLT_PROV_ID
FK1,I3 RPLC_DEV_ID

SEC_APP_TBL

PK APP_ID

U1 APP_PUB_ID
I1 APP_SCRT
 LOCKED
 FAIL_AUTH
 LAST_AUTH_UTC
 CRT_UTC
FK4,I2 CRT_PROV_ID
 UPD_UTC
FK2,I5 UPD_PROV_ID
 OBSLT_UTC
FK3,I3 OBSLT_PROV_ID
FK1,I4 RPLC_APP_ID

SEC_USR_ROL_ASSOC_TBL

PK,FK2,I2,I4 USR_ID
PK,FK1,I1,I3 ROL_ID

SEC_USR_EXTRN_LGN_TBL

PK LGN_PVDR
PK PVD_KEY
PK,FK1,I1 USR_ID

SEC_USR_CLM_TBL

PK CLM_ID

FK1,I1,I2 USR_ID
 CLM_TYP
 CLM_VAL

SEC_SES_CLM_TBL

PK CLM_ID

FK1,I1 SES_ID
 CLM_TYP
 CLM_VAL

SEC_ROL_TBL

PK ROL_ID

 ROL_NAME
 DESCR
 CRT_UTC
FK3,I1 CRT_PROV_ID
 OBSLT_UTC
FK2,I2 OBSLT_PROV_ID
 UPD_UTC
FK1,I3 UPD_PROV_ID

SEC_USR_CLS_CDTBL

PK CLS_ID

 MNEMONIC

SEC_SES_TBL

PK SES_ID

 CRT_UTC
 EXP_UTC
FK1,I1 APP_ID
FK3,I3 USR_ID
FK2,I2 DEV_ID
U1 RFRSH_TKN
 RFRSH_EXP_UTC
 AUD

SEC_POL_TBL

PK POL_ID

U1 OID
 POL_NAME
 HDLR_CLS
 IS_PUB
 IS_ELEV
 CRT_UTC
FK2,I1 CRT_PROV_ID
 OBSLT_UTC
FK1,I2 OBSLT_PROV_ID

SEC_DEV_POL_ASSOC_TBL

PK SEC_POL_INST_ID

FK1,I2,I1 DEV_ID
FK2,I3 POL_ID
 POL_ACT

SEC_APP_POL_ASSOC_TBL

PK SEC_POL_INST_ID

FK1,I1,I2 APP_ID
FK2,I3 POL_ID
 POL_ACT

Table Implements Description

sec_usr_tbl Security User Stores security information
related to users such as login,
timestamps, etc..

sec_app_tbl Security Application Security information related to
applications such as client
identifiers, and application
secrets.

SanteDB/SanteSuite Design 166

sec_dev_tbl Security Device Security information related to
devices such as device secrets
and claims related to devices.

sec_rol_tbl Security Role Security information related to
roles which are used as the
basis for access control.

sec_pol_tbl Security Policy Security information related to
policies such as action and data
policies used by the ADO.NET
security policy information
point.

sec_app_pol_assoc_tbl Security Application <> Policy Associates security applications
to policies to which the
application has granted or
explicit deny access.

sec_dev_pol_assoc_tbl Security Device <> Policy Associates security device to
policies to which the device has
granted or explicit deny.

sec_usr_clm_tbl Security User Claims Associates security users to
additional (external) claims
made about that user which
form the basis of claims when a
new session is created for that
user.

sec_usr_extrn_lgn_tbl Security User External Login Associates security users to the
external login
provider/information. This
allows for mapping of user
credentials to external identity
providers.

sec_usr_rol_assoc_tbl Security User Role Association Associates security users to the
roles to which they are a
member.

sec_rol_pol_assoc_tbl Security Role Policy Association Associates security roles to the
policies which members of
thayt role are granted or denied
access. This forms the basis of
an access control list for that
user whenever a session is
created.

sec_usr_cls_tbl Security User Classes Classifies the type of security
user as either a human user, a
system user or a device or
application user.

sec_ses_tbl Security Session A complete list of user sessions
which have been recorded.
Note that this table is only

SanteDB/SanteSuite Design 167

populated when and if the
ADO.NET session provider is
registered in the application
configuration.

sec_ses_clm_tbl Security Session Claims Stores the session specific
claims for a particular session.
This includes the purpose of use
of the session, any elevations
granted to the user and (if
applicable) the issuer of the
session.

sec_prov_tbl Security Provenance Stores information about the
provenance of data. A
provenance object is created
whenever data is updated,
created, or obsoleted. One
provenance object is created
per transaction and batch.

8.3.3.4. ADO Concept Tables

CD_REL_TYP_CDTBL

PK REL_TYP_ID

 REL_NAME
I1 MNEMONIC
 CRT_UTC
FK3,I2 CRT_PROV_ID
 OBSLT_UTC
FK1,I3 OBSLT_PROV_ID
 UPD_UTC
FK2,I4 UPD_PROV_ID

CD_SET_MEM_ASSOC_TBL

PK,FK1,I2,I4 SET_ID
PK,FK2,I3,I1 CD_ID

CD_REL_ASSOC_TBL

PK CD_REL_ID

FK2,I7,I1 SRC_CD_ID
FK3,I8,I2 TRG_CD_ID
FK1,I6 REL_TYP_ID
FK5,I4,I3 EFFT_VRSN_SEQ_ID
FK4,I5,I3 OBSLT_VRSN_SEQ_ID

CD_TBL

PK CD_ID

 IS_SYS

CD_REF_TERM_ASSOC_TBL

PK CD_REF_TERM_ID

FK5,I6 REF_TERM_ID
FK2,I1,I3 CD_ID
FK4,I4,I2 EFFT_VRSN_SEQ_ID
FK3,I5,I2 OBSLT_VRSN_SEQ_ID
FK1,I7 REL_TYP_ID

CD_CLS_TBL

PK CLS_ID

 CLS_NAME
U1 MNEMONIC
 CRT_UTC
FK3,I1 CRT_PROV_ID
 UPD_UTC
FK2,I3 UPD_PROV_ID
 OBSLT_UTC
FK1,I2 OBSLT_PROV_ID

CD_SYS_TBL

PK CS_ID

 CS_NAME
U1 OID
 DOMAIN
 CRT_UTC
FK3,I1 CRT_PROV_ID
 OBSLT_UTC
FK1,I2 OBSLT_PROV_ID
 UPD_UTC
FK2,I3 UPD_PROV_ID
U2 URL
 VRSN_TXT
 DESCR

CD_SET_TBL

PK SET_ID

 SET_NAME
U1 MNEMONIC
U2 OID
U3 URL
 CRT_UTC
FK3,I1 CRT_PROV_ID
 OBSLT_UTC
 OBSLT_RSN
FK1,I2 OBSLT_PROV_ID
 UPD_UTC
FK2,I3 UPD_PROV_ID

CD_VRSN_TBL

PK CD_VRSN_ID

U1 VRSN_SEQ_ID
FK3,I3,I1 CD_ID
FK2,I8 STS_CD_ID
 CRT_UTC
FK6,I5 CRT_PROV_ID
 OBSLT_UTC
FK5,I6 OBSLT_PROV_ID
FK4,I7 RPLC_VRSN_ID
FK1,I4 CLS_ID
I2 MNEMONIC

CD_NAME_TBL

PK NAME_ID

FK1,I1,I5 CD_ID
FK2,I4,I6 EFFT_VRSN_SEQ_ID
FK3,I7,I4 OBSLT_VRSN_SEQ_ID
 LANG_CS
I3 VAL
I2 PHON_CS
FK4,I8 PHON_ALG_ID

REF_TERM_NAME_TBL

PK REF_TERM_NAME_ID

FK1,I5 REF_TERM_ID
 LANG_CS
I2 TERM_NAME
 CRT_UTC
FK2,I3 CRT_PROV_ID
 OBSLT_UTC
FK3,I4 OBSLT_PROV_ID
 OBSLT_RSN
I1 PHON_CS
 PHON_ALG_ID

REF_TERM_TBL

PK REF_TERM_ID

FK1,I3,U1 CS_ID
U1,I1 MNEMONIC
 CRT_UTC
FK4,I2 CRT_PROV_ID
 OBSLT_UTC
FK2,I4 OBSLT_PROV_ID
 UPD_UTC
FK3,I5 UPD_PROV_ID

SanteDB/SanteSuite Design 168

Table Implements Description

cd_tbl Concept Stores the master list and non-
versioned properties of the
SanteDB concept dictionary.

cd_vrsn_tbl Concept Version Stores the versioned attributes
of the SanteDB concept
dictionary.

cd_cls_tbl Concept Classifier Classifications for the concepts
stored within the SanteDB
concept dictionary.

cd_name_tbl Concept Name Canonical/Internal names for
each of the concepts stored in
the SanteDB concept dictionary.
These are localized names for
the concept.

cd_rel_assoc_tbl Concept Relationship Associations between concepts
which dictate relationships
between concepts such as
SAME AS, NARROWER THAN

cd_rel_typ_cdtbl Concept Relationship Type Identifies the types of
relationships that one or more
concepts may have between
each other.

cd_sys_tbl Code System Standardized reference
terminologies (code systems)
such as LOINC, SNOMED, etc.

cd_ref_term_assoc_tbl Code Reference Term
Association

Associates concepts to
reference terms with a strength.

cd_set_tbl Concept Set A logical grouping of concepts
to a particular use/set.

cd_set_mem_tbl Concept Set Members Association between the
member concepts of a concept
set and the set itself.

ref_term_tbl Reference Terms Stores the reference terms
(standardized or wire level
codes).

ref_term_name_tbl Reference Term Name Standardized display names fo
the reference terms.

8.4. Business Data Model
The business data model represents a series of classes (rather than database entities) which are used by

all application code within the SanteDB HDS. The business data model is also exposed via the HDSI

(Immunization Management Service Interface).

Like the logical data model, the business data model is loosely based on the HL7 RIM. The major

difference is that the business data model uses an object hierarchy rather than using relationships. The

IDataPersistenceService implementations manage the translation of this paradigm.

SanteDB/SanteSuite Design 169

8.4.1. Business Data Model Queries
Queries on against the business model are exposed via IDataPersistenceService implementations’

Query() method. The Query() method in .NET accepts an expression tree parameter (lambda predicate)

which is translated via the ModelMapper class.

In order to map the business model classes to LINQ to SQL classes, it is recommended that third party

storage plugins use the ModelMapper class and provide an appropriate mapping file.

In order to execute a query, a developer should use the following pattern:

var IDataPersistenceService<SecurityUser> persistenceService =
ApplicationContext.Current.GetService<IDataPersistenceService<SecurityUser>>();
var queryResults = persistenceService.Query(u => u.Email.EndsWith("test.com") && u.Roles.Any(r => r.Name
== "Administrators"), null);

Furthermore, additional LINQ expressions such as Count(), Any(), All(), Take(), Skip() can be used to

control execution against the datamodel. It is important to note that LINQ expressions are translated by

the persistence layer directly into SQL, therefore advanced operations performed against objects cannot

be used in these expressions.

By default, most data persistence implementations (ADO and MSSQL) will support the following

methods.

Method Equivalent SQL Description / Example

.Where(x) WITH cte SELECT x Indicates the provider should perform a sub-query.
This is used for guard conditions

.Any(x) EXISTS (SELECT x) Indicates that the provider should count the
existence of a sub-element as a condition.

x.EndsWith(y) x LIKE '%' || y Evaluates to true when a field ends with the
specified value.

x.StartsWith(y) x LIKE y || '%' Evaluates to true when a field starts with the
specified value.

x.Contains(y) x LIKE '%' || y || '%' Evaluates to true when the parameter appears
anywhere in the field.

x.ToUpper() UPPER(x) Instructs that a field should be converted to upper
case.

x.ToLower() LOWER(x) Instructs that a field should be converted to lower
case.

x.HasValue x IS NOT NULL When used on a nullable field, evaluates to true
when the nullable field has a value.

8.4.2. Foundational Classes
There are several foundational classes which are used in the business data model. Class associations in

the business model are delay loaded meaning that they are loaded upon first access. For example, when

loading a SecurityUser the Groups property is only loaded via the data persistence layer when accessed

by a consumer application. This reduces hits to the underlying database.

SanteDB/SanteSuite Design 170

The foundational classes are listed in more detail in .

Class Purpose

IdentitifedData
(abstract)

Encapsulates all business model classes which have a
primary key. Controls the delay loading behavior of
implementing classes.

BaseEntityData
(abstract)

Encapsulates entity data which is audited with a
creation/obsoletion time and user.

VersionedEntityData<THistoryModelType>
(abstract)

All entities which are versioned are derived from this
class. The class contains a property of type
THistoryModelType which is a pointer to the previous
version of the entity instance.

VersionBoundRelationData<TTargetType>
(abstract)

All entities which are associated with a version of an
entity (those associated with the VersionedEntityData
instance) will derive from this class. It contains
information such as effective and obsolete version
sequence numbers.

class Model

TSourceType > IdentifiedData

Association

- m_sourceEntity: TSourceType

- m_sourceEntityKey: Guid

+ Refresh(): void

«property»

+ SourceEntity(): TSourceType

+ SourceEntityKey(): Guid

BaseEntityData

- m_createdBy: SecurityUser

- m_createdById: Guid

- m_obsoletedBy: SecurityUser

- m_obsoletedById: Guid?

+ Refresh(): void

+ ToString(): string

«property»

+ CreatedBy(): SecurityUser

+ CreatedByKey(): Guid

+ CreationTime(): DateTimeOffset

+ CreationTimeXml(): String

+ ObsoletedBy(): SecurityUser

+ ObsoletedByKey(): Guid?

+ ObsoletionTime(): DateTimeOffset?

+ ObsoletionTimeXml(): String

IdentifiedData

- m_delayLoad: bool = true

+ Clone(): IdentifiedData

DelayLoad(Guid?, TEntity): TEntity

+ GetLocked(): IdentifiedData

+ Refresh(): void

+ SetDelayLoad(bool): void

«property»

+ IsDelayLoadEnabled(): bool

+ Key(): Guid

+ Type(): String

NonVersionedEntityData

- m_updatedBy: SecurityUser

- m_updatedById: Guid?

+ Refresh(): void

«property»

+ UpdatedBy(): SecurityUser

+ UpdatedByKey(): Guid?

+ UpdatedTime(): DateTimeOffset?

+ UpdatedTimeXml(): String

TSourceType > VersionedEntityData<TSourceType>

VersionedAssociation

- m_effectiveVersion: TSourceType

- m_effectiveVersionSequenceId: Decimal

- m_obsoleteVersion: TSourceType

- m_obsoleteVersionSequenceId: Decimal?

+ Refresh(): void

«property»

+ EffectiveVersion(): TSourceType

+ EffectiveVersionSequenceId(): Decimal

+ ObsoleteVersion(): TSourceType

+ ObsoleteVersionSequenceId(): Decimal?

THistoryModelType > VersionedEntityData<THistoryModelType>

VersionedEntityData

- m_previousVersion: THistoryModelType

- m_previousVersionId: Guid?

+ Refresh(): void

+ ToString(): string

+ VersionedEntityData()

«property»

- PreviousVersion(): IVersionedEntity

+ PreviousVersion(): THistoryModelType

+ PreviousVersionKey(): Guid?

+ VersionKey(): Guid

+ VersionSequence(): Decimal

< TSourceType->TSourceType >

SanteDB/SanteSuite Design 171

8.4.3. Security Classes
The security business model data classes are not necessarily intended to be used directly by consumers,

rather they serve as a series of classes used by the security infrastructure in SanteDB such as the

IPolicyInformationService, IPolicyDecisionService, IIdentityProviderService and IRoleProviderService

implementations.

The SecurityUser class is used to create IIdentity and IPrincipal during the course of an authentication

request. SecurityDevice and SecurityApplication are used to populate claims data which indicates the

device and application the user is using.

8.4.4. Data Types
The data type business model classes are used to store reusable, common data elements. These include:

The concept system, Assigning Authority System, Identifiers, etc.

class Security

SecurityApplication

- m_policies: List<SecurityPolicyInstance>

«property»

+ ApplicationSecret(): String

+ Name(): String

SecurityDev ice

«property»

+ DeviceSecret(): String

+ Name(): String

NonVersionedEntityData

SecurityEntity

m_policies: List<SecurityPolicyInstance> = new List<Securi...

«property»

+ Policies(): List<SecurityPolicyInstance>

«enumerati...

PolicyGrantType

 Deny = 0

 Elevate = 1

 Grant = 2

BaseEntityData

SecurityPolicy

«property»

+ CanOverride(): bool

+ Handler(): String

+ IsPublic(): bool

+ Name(): String

+ Oid(): String
Association

SecurityPolicyInstance

- m_policy: SecurityPolicy

- m_policyId: Guid

+ SecurityPolicyInstance()

+ SecurityPolicyInstance(SecurityPolicy, PolicyGrantType)

«property»

+ GrantType(): PolicyGrantType

+ Policy(): SecurityPolicy

+ PolicyKey(): Guid

SecurityRole

- m_users: List<SecurityUser>

+ Refresh(): void

«property»

+ Description(): String

+ Name(): String

+ Users(): List<SecurityUser>

SecurityUser

- m_roles: List<SecurityRole>

- m_userEntities: List<Person>

+ Refresh(): void

«property»

+ Email(): String

+ EmailConfirmed(): Boolean

+ Entities(): List<Person>

+ EntitiesXml(): List<Guid>

+ InvalidLoginAttempts(): Int32

+ LastLoginTime(): DateTimeOffset?

+ LastLoginTimeXml(): String

+ Lockout(): DateTime?

+ LockoutXml(): String

+ PasswordHash(): String

+ PhoneNumber(): String

+ PhoneNumberConfirmed(): Boolean

+ Roles(): List<SecurityRole>

+ SecurityHash(): String

+ TwoFactorEnabled(): Boolean

+ UserClass(): Guid

+ UserName(): String

+ UserPhoto(): byte[]

-m_policy

-m_policies 0..*

#m_policies

0..*

-m_roles

0..*

-m_users

0..*

SanteDB/SanteSuite Design 172

8.4.5. Acts
TODO:

class DataTypes

BaseEntityData

AssigningAuthority

- m_assigningDevice: SecurityDevice

- m_assigningDeviceId: Guid?

+ Refresh(): void

«property»

+ AssigningDevice(): SecurityDevice

+ AssigningDeviceKey(): Guid?

+ Description(): String

+ DomainName(): String

+ Name(): String

+ Oid(): String

+ Url(): String

NonVersionedEntityData

CodeSystem

«property»

+ Authority(): string

+ Description(): string

+ Name(): string

+ ObsoletionReason(): string

+ Oid(): string

+ Url(): string

+ VersionText(): string

VersionedEntityData

Concept

- m_class: ConceptClass

- m_classId: Guid

- m_conceptNames: List<ConceptName>

- m_conceptSet: List<ConceptSet>

- m_conceptStatus: Concept

- m_conceptStatusId: Guid?

- m_referenceTerms: List<ConceptReferenceTerm>

- m_relationships: List<ConceptRelationship>

+ Refresh(): void

+ SetDelayLoadProperties(List<ConceptName>, List<ConceptReferenceTerm>): void

«property»

+ Class(): ConceptClass

+ ClassKey(): Guid

+ ConceptNames(): List<ConceptName>

+ ConceptSets(): List<ConceptSet>

+ ConceptSetsXml(): List<Guid>

+ IsSystemConcept(): bool

+ Mnemonic(): String

+ ReferenceTerms(): List<ConceptReferenceTerm>

+ Relationship(): List<ConceptRelationship>

+ StatusConcept(): Concept

+ StatusConceptKey(): Guid?

NonVersionedEntityData

ConceptClass

«property»

+ Mnemonic(): string

+ Name(): string

VersionedAssociation

ConceptName

- m_phoneticAlgorithm: PhoneticAlgorithm

- m_phoneticAlgorithmId: Guid

+ Refresh(): void

«property»

+ Language(): String

+ Name(): String

+ PhoneticAlgorithm(): PhoneticAlgorithm

+ PhoneticAlgorithmKey(): Guid

+ PhoneticCode(): String

VersionedAssociation

ConceptReferenceTerm

- m_referenceTerm: ReferenceTerm

- m_referenceTermId: Guid

- m_relationshipType: ConceptRelationshipType

- m_relationshipTypeId: Guid

+ Refresh(): void

«property»

+ ReferenceTerm(): ReferenceTerm

+ ReferenceTermKey(): Guid

+ RelationshipType(): ConceptRelationshipType

+ RelationshipTypeKey(): Guid

VersionedAssociation

ConceptRelationship

- m_relationshipType: ConceptRelationshipType

- m_relationshipTypeId: Guid

- m_targetConcept: Concept

- m_targetConceptId: Guid

+ Refresh(): void

«property»

+ RelationshipType(): ConceptRelationshipType

+ RelationshipTypeKey(): Guid

+ TargetConcept(): Concept

+ TargetConceptKey(): Guid

NonVersionedEntityData

ConceptRelationshipType

«property»

+ Mnemonic(): String

+ Name(): String

BaseEntityData

ConceptSet

- m_setMembers: List<Concept>

«property»

+ Concepts(): List<Concept>

+ ConceptsXml(): List<Guid>

+ Mnemonic(): String

+ Name(): String

+ ObsoletionReason(): string

+ Oid(): String

+ Url(): String

«enumerati...

DatePrecision

 Year

 Month

 Day

 Hour

 Minute

 Second

VersionedAssociation

TBoundModel > VersionedEntityData<TBoundModel>

Extension

- m_extensionType: ExtensionType

- m_extensionTypeKey: Guid

+ Refresh(): void

«property»

+ ExtensionDisplay(): String

+ ExtensionType(): ExtensionType

+ ExtensionTypeKey(): Guid

+ ExtensionValue(): byte[]

EntityExtension

+ EntityExtension()

+ EntityExtension(Guid, byte[])

ActExtension

NonVersionedEntityData

ExtensionType

«property»

+ ExtensionHandler(): Type

+ IsEnabled(): bool

+ Name(): String

EntityIdentifier

+ EntityIdentifier()

+ EntityIdentifier(Guid, String)

+ EntityIdentifier(AssigningAuthority, String)

ActIdentifier

VersionedAssociation

TBoundModel > VersionedEntityData<TBoundModel>

IdentifierBase

- m_authority: AssigningAuthority

- m_authorityId: Guid

- m_identifierType: IdentifierType

- m_identifierTypeId: Guid?

+ Refresh(): void

«property»

+ Authority(): AssigningAuthority

+ AuthorityKey(): Guid

+ IdentifierType(): IdentifierType

+ IdentifierTypeKey(): Guid?

+ Value(): String

BaseEntityData

IdentifierType

- m_scopeConcept: Concept

- m_scopeConceptId: Guid?

- m_typeConcept: Concept

- m_typeConceptId: Guid

+ Refresh(): void

«property»

+ Scope(): Concept

+ ScopeConceptKey(): Guid?

+ TypeConcept(): Concept

+ TypeConceptKey(): Guid

VersionedAssociation

TBoundModel > VersionedEntityData<TBoundModel>

Note

- m_author: Entity

- m_authorKey: Guid

+ Note()

+ Note(Guid, String)

+ Refresh(): void

«property»

+ Author(): Entity

+ AuthorKey(): Guid

+ Text(): String

EntityNote

+ EntityNote()

+ EntityNote(Guid, String)

ActNote

NonVersionedEntityData

PhoneticAlgorithm

- s_lockObject: object = new object()

- s_nullPhoneticAlgorithm: PhoneticAlgorithm = null

«property»

+ EmptyAlgorithm(): PhoneticAlgorithm

+ Handler(): String

+ Name(): String

NonVersionedEntityData

ReferenceTerm

- m_codeSystem: CodeSystem

- m_codeSystemId: Guid

- m_displayNames: List<ReferenceTermName>

+ Refresh(): void

«property»

+ CodeSystem(): CodeSystem

+ CodeSystemKey(): Guid

+ DisplayNames(): List<ReferenceTermName>

+ Mnemonic(): string

BaseEntityData

ReferenceTermName

- m_phoneticAlgorithm: PhoneticAlgorithm

- m_phoneticAlgorithmId: Guid

+ Refresh(): void

«property»

+ Language(): String

+ Name(): String

+ PhoneticAlgorithm(): PhoneticAlgorithm

+ PhoneticAlgorithmKey(): Guid

+ PhoneticCode(): String

+ ReferenceTermKey(): Guid

BaseEntityData

TSourceType > IdentifiedData

Tag

- m_sourceEntity: TSourceType

- m_sourceEntityKey: Guid

«property»

+ SourceEntity(): TSourceType

+ SourceEntityKey(): Guid

+ TagKey(): String

+ Value(): String

EntityTag

+ EntityTag()

+ EntityTag(String, String)

ActTag

< TBoundModel->Act >

-m_identifierType

-m_targetConcept

< TBoundModel->Entity >

< TSourceType->Act >-m_extensionType

-m_conceptSet 0..*

-m_codeSystem

-m_typeConcept

< TBoundModel->Entity >

-m_setMembers 0..*
-m_referenceTerms 0..*

< TSourceType->Entity >

-m_scopeConcept

-m_phoneticAlgorithm

< TBoundModel->Entity >

< TBoundModel->Acts.Act >

-m_relationshipType

-m_relationships 0..*

-m_phoneticAlgorithm

-m_displayNames 0..*

-m_relationshipType

< TBoundModel->Act >

-m_referenceTerm

-m_authority

-m_class

-m_conceptNames 0..*

SanteDB/SanteSuite Design 173

8.4.6. Entities
TODO

class Acts

VersionedEntityData

Act

- m_classConcept: Concept

- m_classConceptKey: Guid

- m_extensions: List<ActExtension>

- m_identifiers: List<ActIdentifier>

- m_moodConcept: Concept

- m_moodConceptKey: Guid

- m_notes: List<ActNote>

- m_participations: List<ActParticipation>

- m_reasonConcept: Concept

- m_reasonConceptKey: Guid?

- m_relationships: List<ActRelationship>

- m_statusConcept: Concept

- m_statusConceptKey: Guid

- m_tags: List<ActTag>

- m_typeConcept: Concept

- m_typeConceptKey: Guid

+ Refresh(): void

«property»

+ ActTime(): DateTimeOffset

+ ActTimeXml(): String

+ ClassConcept(): Concept

+ ClassConceptKey(): Guid

+ Extensions(): List<ActExtension>

+ Identifiers(): List<ActIdentifier>

+ IsNegated(): Boolean

+ MoodConcept(): Concept

+ MoodConceptKey(): Guid

+ Notes(): List<ActNote>

+ Participations(): List<ActParticipation>

+ ReasonConcept(): Concept

+ ReasonConceptKey(): Guid?

+ Relationships(): List<ActRelationship>

+ StartTime(): DateTimeOffset?

+ StartTimeXml(): String

+ StatusConcept(): Concept

+ StatusConceptKey(): Guid

+ StopTime(): DateTimeOffset?

+ StopTimeXml(): String

+ Tags(): List<ActTag>

+ TypeConcept(): Concept

+ TypeConceptKey(): Guid

VersionedAssociation

ActParticipation

- m_participationRole: Concept

- m_participationRoleKey: Guid

- m_player: Entity

- m_playerKey: Guid

+ Refresh(): void

«property»

+ ParticipationRole(): Concept

+ ParticipationRoleKey(): Guid

+ PlayerEntity(): Entity

+ PlayerEntityKey(): Guid

VersionedAssociation

ActRelationship

- m_relationshipType: Concept

- m_relationshipTypeKey: Guid

- m_targetAct: Act

- m_targetActKey: Guid

+ Refresh(): void

«property»

+ RelationshipType(): Concept

+ RelationshipTypeKey(): Guid

+ TargetAct(): Act

+ TargetActKey(): Guid

Observation

- m_interpretationConcept: Concept

- m_interpretationConceptKey: Guid?

+ Observation()

+ Refresh(): void

«property»

+ InterpretationConcept(): Concept

+ InterpretationConceptKey(): Guid?

QuantityObserv ation

- m_unitOfMeasure: Concept

- m_unitOfMeasureKey: Guid

+ Refresh(): void

«property»

+ UnitOfMeasure(): Concept

+ UnitOfMeasureKey(): Guid

+ Value(): Decimal

TextObserv ation

«property»

+ Value(): String

CodedObserv ation

- m_value: Concept

- m_valueKey: Guid

+ Refresh(): void

«property»

+ Value(): Concept

+ ValueKey(): Guid

PatientEncounter

- m_dischargeDisposition: Concept

- m_dischargeDispositionKey: Guid?

+ PatientEncounter()

+ Refresh(): void

«property»

+ DischargeDisposition(): Concept

+ DischargeDispositionKey(): Guid?

SubstanceAdministration

- m_doseUnit: Concept

- m_doseUnitKey: Guid

- m_route: Concept

- m_routeKey: Guid

+ Refresh(): void

+ SubstanceAdministration()

«property»

+ DoseQuantity(): Decimal

+ DoseUnit(): Concept

+ DoseUnitKey(): Guid

+ Route(): Concept

+ RouteKey(): Guid

+ SequenceId(): uint

-m_targetAct

-m_participations

0..*

-m_relationships

0..*

SanteDB/SanteSuite Design 174

8.5. Pre-Configured Data Reference
SanteDB’s data model is expected to be populated with a minimum set of data which the core

functionality will use. If a data persistence store does not have the required data elements described in

this section, key functionality of the SanteDB system may not function as expected.

class Entities

ApplicationEntity

- m_securityApplication: SecurityApplication

- m_securityApplicationKey: Guid

+ ApplicationEntity()

+ Refresh(): void

«property»

+ SecurityApplication(): SecurityApplication

+ SecurityApplicationKey(): Guid

+ SoftwareName(): String

+ VendorName(): String

+ VersionName(): String

Dev iceEntity

- m_securityDevice: SecurityDevice

- m_securityDeviceKey: Guid

+ DeviceEntity()

+ Refresh(): void

«property»

+ ManufacturedModelName(): String

+ OperatingSystemName(): String

+ SecurityDevice(): SecurityDevice

+ SecurityDeviceKey(): Guid

VersionedEntityData

Entity

- m_addresses: List<EntityAddress>

- m_classConcept: Concept

- m_classConceptId: Guid

- m_creationAct: Act

- m_creationActId: Guid

- m_determinerConcept: Concept

- m_determinerConceptId: Guid

- m_extensions: List<EntityExtension>

- m_identifiers: List<EntityIdentifier>

- m_names: List<EntityName>

- m_notes: List<EntityNote>

- m_participations: List<ActParticipation>

- m_relationships: List<EntityRelationship>

- m_statusConcept: Concept

- m_statusConceptId: Guid

- m_tags: List<EntityTag>

- m_telecomAddresses: List<EntityTelecomAddress>

- m_typeConcept: Concept

- m_typeConceptId: Guid?

+ Refresh(): void

+ SetDelayLoadProperties(List<EntityName>, List<EntityAddress>, List<EntityIdentifier>, List<EntityTelecomAddress>): void

«property»

+ Addresses(): List<EntityAddress>

+ ClassConcept(): Concept

+ ClassConceptKey(): Guid

+ CreationAct(): Act

+ CreationActKey(): Guid

+ DeterminerConcept(): Concept

+ DeterminerConceptKey(): Guid

+ Extensions(): List<EntityExtension>

+ Identifiers(): List<EntityIdentifier>

+ Names(): List<EntityName>

+ Notes(): List<EntityNote>

+ Participations(): List<ActParticipation>

+ Relationships(): List<EntityRelationship>

+ StatusConcept(): Concept

+ StatusConceptKey(): Guid

+ Tags(): List<EntityTag>

+ Telecoms(): List<EntityTelecomAddress>

+ TypeConcept(): Concept

+ TypeConceptKey(): Guid?

VersionedAssociation

EntityAddress

- m_addressComponents: List<EntityAddressComponent>

- m_addressUseConcept: Concept

- m_addressUseKey: Guid?

+ EntityAddress(Guid, String, String, String, String, String)

+ EntityAddress()

+ Refresh(): void

«property»

+ AddressUse(): Concept

+ AddressUseKey(): Guid?

+ Component(): List<EntityAddressComponent>

EntityAddressComponent

+ EntityAddressComponent(Guid, String)

+ EntityAddressComponent()

VersionedAssociation

EntityName

- m_nameComponents: List<EntityNameComponent>

- m_nameUseConcept: Concept

- m_nameUseKey: Guid?

+ EntityName(Guid, String, String[])

+ EntityName(Guid, String)

+ EntityName()

+ Refresh(): void

«property»

+ Component(): List<EntityNameComponent>

+ NameUse(): Concept

+ NameUseKey(): Guid?

EntityNameComponent

- m_phoneticAlgorithm: PhoneticAlgorithm

- m_phoneticAlgorithmId: Guid

+ EntityNameComponent()

+ EntityNameComponent(String)

+ EntityNameComponent(Guid, String)

«property»

+ PhoneticAlgorithm(): PhoneticAlgorithm

+ PhoneticAlgorithmKey(): Guid

+ PhoneticCode(): String

VersionedAssociation

EntityRelationship

- m_associationTypeKey: Guid

- m_relationshipType: Concept

- m_targetEntity: Entity

- m_targetEntityKey: Guid

+ EntityRelationship()

+ EntityRelationship(Guid, Entity)

+ Refresh(): void

«property»

+ RelationshipType(): Concept

+ RelationshipTypeKey(): Guid

+ TargetEntity(): Entity

+ TargetEntityKey(): Guid

VersionedAssociation

EntityTelecomAddress

- m_nameUseConcept: Concept

- m_nameUseKey: Guid?

+ EntityTelecomAddress()

+ EntityTelecomAddress(Guid, String)

+ Refresh(): void

«property»

+ AddressUse(): Concept

+ AddressUseKey(): Guid?

+ Value(): String

Association

TBoundModel > IdentifiedData

GenericComponentValues

- m_componentType: Concept

- m_componentTypeKey: Guid?

+ GenericComponentValues()

+ GenericComponentValues(Guid, String)

+ GenericComponentValues(String)

+ Refresh(): void

«property»

+ ComponentType(): Concept

+ ComponentTypeKey(): Guid?

+ Value(): String

ManufacturedMaterial

+ ManufacturedMaterial()

«property»

+ LotNumber(): String

Material

- m_formConcept: Concept

- m_formConceptKey: Guid?

- m_quantityConcept: Concept

- m_quantityConceptKey: Guid?

+ Material()

+ Refresh(): void

«property»

+ ExpiryDate(): DateTime?

+ FormConcept(): Concept

+ FormConceptKey(): Guid?

+ IsAdministrative(): Boolean

+ Quantity(): Decimal?

+ QuantityConcept(): Concept

+ QuantityConceptKey(): Guid?

Organization

- m_industryConcept: Concept

- m_industryConceptKey: Guid

+ Organization()

+ Refresh(): void

«property»

+ IndustryConcept(): Concept

+ IndustryConceptKey(): Guid

Person

- m_languageCommunication: List<PersonLanguageCommunication>

- m_securityUser: SecurityUser

+ Person()

+ Refresh(): void

«property»

+ AsSecurityUser(): SecurityUser

+ DateOfBirth(): DateTime?

+ DateOfBirthPrecision(): DatePrecision?

+ LanguageCommunication(): List<PersonLanguageCommunication>

VersionedAssociation

PersonLanguageCommunication

+ PersonLanguageCommunication()

+ PersonLanguageCommunication(String, bool)

«property»

+ IsPreferred(): bool

+ LanguageCode(): string

Place

- m_services: List<PlaceService>

+ Place()

+ Refresh(): void

«property»

+ ClassConceptKey(): Guid

+ IsMobile(): Boolean

+ Lat(): double?

+ Lng(): double?

+ Services(): List<PlaceService>

VersionedAssociation

PlaceServ ice

- m_service: Concept

- m_serviceConceptKey: Guid

+ Refresh(): void

«property»

+ ServiceConcept(): Concept

+ ServiceConceptKey(): Guid

+ ServiceSchedule(): Object

UserEntity

- m_securityUser: SecurityUser

- m_securityUserKey: Guid

«property»

+ SecurityUser(): SecurityUser

+ SecurityUserKey(): Guid

-m_services 0..*

-m_relationships 0..*

< TBoundModel->EntityAddress >

< TBoundModel->EntityName >

-m_addressComponents 0..*

-m_addresses 0..*

-m_telecomAddresses 0..*

-m_nameComponents 0..*

-m_targetEntity

-m_languageCommunication 0..*

-m_names 0..*

SanteDB/SanteSuite Design 175

8.5.1. Object Identifier (OID) Reference
The SanteDB project namespace (OID) is located at : 1.3.6.1.4.1.33349.3.1.5.9 [iso(1) identified-

organization(3) dod(6) internet(1) private(4) enterprise(1) SanteSuite (33349.3.1.5.9)

Root Child Description

1.3.6.1.4.1.33349.3.1.5.9 SanteSuite

1.3.6.1.4.1.33349.3.1.5.9 0 Services

1.3.6.1.4.1.33349.3.1.5.9 1 Applications

1.3.6.1.4.1.33349.3.1.5.9 2 Privacy & Security

1.3.6.1.4.1.33349.3.1.5.9 3 Concepts / Vocabulary

1.3.6.1.4.1.33349.3.1.5.9 4 Templates

1.3.6.1.4.1.33349.3.1.5.9 5 Deployments

8.5.1.1. Template References

SanteDB project contains a series of the templates which are used to pre-populate and provide form

entry using SanteDB client components. These templates are identified in .

Template Template ID Description

 1.3.6.1.4.1.33349.3.1.5.9.4.1 Root template namespace for all acts
related to administration of substances.

Immunization 1.3.6.1.4.1.33349.3.1.5.9.4.1.0
(act.substanceadmin.immunization)

Immunization template containing
information related to a routine
immunization given to a patient.

Drug Therapy 1.3.6.1.4.1.33349.3.1.5.9.4.1.1
(act.substanceadmin.supplement)

Drug template related to a routine drug
therapy such as a supplement schedule.

 1.3.6.1.4.1.33349.3.1.5.9.4.2 Root template namespace for all acts
related to patient encounters.

Patient
Appointment

1.3.6.1.4.1.33349.3.1.5.9.4.2.0
(act.patientencounter.appointment)

Represents a generic patient encounter
appointment.

 1.3.6.1.4.1.33349.3.1.5.9.4.3 Root template namespace for all acts
related to stock events.

Stock
Transfer

1.3.6.1.4.1.33349.3.1.5.9.4.3.0
(act.stock.xfer)

Act template which is used to indicate the
physical transfer of objects from one
holder to another.

Stock
Adjustment

1.3.6.1.4.1.33349.3.1.5.9.4.3.1
(act.stock.adjust)

Act template which is used to indicate the
adjustment of stock in a holder

 1.3.6.1.4.1.33349.3.1.5.9.4.4 Root template namespace for templates
related to observations

Weight 1.3.6.1.4.1.33349.3.1.5.9.4.4.0
(act.observation.weight)

A template which is used for recording of
patient weight.

Height or
Length

1.3.6.1.4.1.33349.3.1.5.9.4.4.1
(act.observation.height)

A template which is used for recording of
patient height / length.

Temperature 1.3.6.1.4.1.33349.3.1.5.9.4.4.2
(act.observation.temp)

A template which is used for recording of
patient temperature.

Blood
Pressure

1.3.6.1.4.1.33349.3.1.5.9.4.4.3
(act.observation.bp)

A template which is used for recording of
patient blood pressures.

SanteDB/SanteSuite Design 176

 1.3.6.1.4.1.33349.3.1.5.9.4.5 Root template namespace of all acts
related to problem concerns

Adverse
Event
Following
Immunization

1.3.6.1.4.1.33349.3.1.5.9.4.5.0 Represents the Adverse Event Following
Immunization problem event template

Problem
Statement

1.3.6.1.4.1.33349.3.1.5.9.4.5.1 Problem Statement – Represents a simply
stated problem that the patient is or has
experienced with a severity.

Patient
allergy /
intolerance

1.3.6.1.4.1.33349.3.1.5.9.4.5.2 Represents a patient allergy or known
intolerance.

Patient
Functional
Limitations

1.3.6.1.4.1.33349.3.1.5.9.4.5.3 Represents a description of a functional
limitation the patient has.

8.5.1.2. Built-in Concept Sets

Key to the construction and validation of data in the SanteDB HDS and Disconnected Client, is the

concept of concept sets. A concept set is described in further detail in 8.2.4 SanteDB Concept Model on

page 112.

OID Concept Set Description

1.3.6.1.4.1.33349.3.1.5.9.3.39 Allergies and Intolerance
Types

Used to group together those concepts
which represent allergies and/or
intolerance types.

1.3.6.1.4.1.33349.3.1.5.9.3.41 Act Types Identifies the types of acts which can
occur and is usually the basis for
validation on Act.TypeConcept
property.

1.3.6.1.4.1.33349.3.1.5.9.3.0 Concept Status Status codes which map the status of
concepts.

1.3.6.1.4.1.33349.3.1.5.9.3.1 Act Class Codes which are used for classifying
the types of Acts which occur in the
system.

1.3.6.1.4.1.33349.3.1.5.9.3.10 Address Component Type Codes which are used to classify the
types or parts of an address.

1.3.6.1.4.1.33349.3.1.5.9.3.11 Name Use Codes which classify how a particular
representation of a name are to be
used.

1.3.6.1.4.1.33349.3.1.5.9.3.12 Telecom Address Use Codes which classify the use of
telecommunications addresses.

1.3.6.1.4.1.33349.3.1.5.9.3.13 Telecom Address Type Codes which identify the type of
telecommunications address
represented..

1.3.6.1.4.1.33349.3.1.5.9.3.14 Service Code Codes which identify the services
offered by a facility.

SanteDB/SanteSuite Design 177

1.3.6.1.4.1.33349.3.1.5.9.3.15 Industry Code Codes which classify the type of
industry a particular organization
operates within.

1.3.6.1.4.1.33349.3.1.5.9.3.17 Role Status Codes which represents the status of
an entity or role.

1.3.6.1.4.1.33349.3.1.5.9.3.18 Name Component Type Codes which classify parts of a name.

1.3.6.1.4.1.33349.3.1.5.9.3.19 Reason Codes Codes which represent general
reasoning behind performing an action.

1.3.6.1.4.1.33349.3.1.5.9.3.2 Act Mood Codes which are used to represent the
mode of a particular act.

1.3.6.1.4.1.33349.3.1.5.9.3.23 Family members of
children

Relationship type codes which are used
to represent family relations.

1.3.6.1.4.1.33349.3.1.5.9.3.24 Spousal Family Members Relationship type codes which ware
used to represent spouses

1.3.6.1.4.1.33349.3.1.5.9.3.25 Vaccines Type codes which are used to
represent vaccines

1.3.6.1.4.1.33349.3.1.5.9.3.26 Administration Act Type
Codes

Type codes which are used to further
classify types of substance
administrations (immunization,
booster, etc.)

1.3.6.1.4.1.33349.3.1.5.9.3.28 AdministrableDrugForm Codes which classify the form of a drug
(injection, capsule, etc.)

1.3.6.1.4.1.33349.3.1.5.9.3.29 Route of administration Codes which are used to identify routes
of administration (oral, intradermal
injection, etc.)

1.3.6.1.4.1.33349.3.1.5.9.3.3 Act Status Codes which track the current status of
an act.

1.3.6.1.4.1.33349.3.1.5.9.3.30 Subset of Discharge
Disposition (HL7)

Codes which represent the discharge
dispositions supported in SanteDB.

1.3.6.1.4.1.33349.3.1.5.9.3.32 AdministrationSite Codes which are use to identify the
location where an injection takes place.

1.3.6.1.4.1.33349.3.1.5.9.3.34 Vital Signs Codes which are used to classify
observations of vital signs.

1.3.6.1.4.1.33349.3.1.5.9.3.35 Units of Measure Codes which are used to capture the
units of measure.

1.3.6.1.4.1.33349.3.1.5.9.3.36 Units of Measure for
Weight

Valid units of measure for weight.

1.3.6.1.4.1.33349.3.1.5.9.3.37 Protocol Violation Reason Reason codes which are specifically
used for “why” an action varies from
the clinical protocol.

1.3.6.1.4.1.33349.3.1.5.9.3.38 Stock Reason Codes Reason codes which are used for stock
adjustments.

1.3.6.1.4.1.33349.3.1.5.9.3.4 Act Relationship Type Codes which are used to classify
relationships between acts.

1.3.6.1.4.1.33349.3.1.5.9.3.42 Null Reason Codes which are used to describe why
a value is not present.

SanteDB/SanteSuite Design 178

1.3.6.1.4.1.33349.3.1.5.9.3.43 Severity Observation
Values

Codes which are used to describe the
severity of something.

1.3.6.1.4.1.33349.3.1.5.9.3.44 Causes of Death Codes which are used to describe
causes of death.

1.3.6.1.4.1.33349.3.1.5.9.3.45 Observation Act Types Codes which are used to classify the
types of observations.

1.3.6.1.4.1.33349.3.1.5.9.3.46 Reaction Observations Codes which are used to classify the
types of reactions that can occur.

1.3.6.1.4.1.33349.3.1.5.9.3.47 Subset of Disposition
(HL7)

1.3.6.1.4.1.33349.3.1.5.9.3.48 Security Audit Codes Codes which are used for security
audits

1.3.6.1.4.1.33349.3.1.5.9.3.49 Material Type Codes Codes which are used to describe the
type of material.

1.3.6.1.4.1.33349.3.1.5.9.3.5 Act Interpretation Codes which are used to describe how
an act is interpreted.

1.3.6.1.4.1.33349.3.1.5.9.3.50 Protocol Violation - Don't
Reschedule

1.3.6.1.4.1.33349.3.1.5.9.3.51 Diagnosis Codes Codes which are used for diagnosis of
problems.

1.3.6.1.4.1.33349.3.1.5.9.3.52 Problem Observation
Types

Used to distinguish regular
observations made with observations
of problems

1.3.6.1.4.1.33349.3.1.5.9.3.53 Adverse Event Types Used to distinguish acts which
represent adverse events of various
types

1.3.6.1.4.1.33349.3.1.5.9.3.59

1.3.6.1.4.1.33349.3.1.5.9.3.6 Entity Class

1.3.6.1.4.1.33349.3.1.5.9.3.7 Entity Status

1.3.6.1.4.1.33349.3.1.5.9.3.8 Entity Relationship Type

1.3.6.1.4.1.33349.3.1.5.9.3.9 Address Use

1.3.6.1.4.1.33349.3.1.5.9.3.10
0

Base for Custom Code
Systems

All custom code systems use this
reserved root as a base

1.3.6.1.4.1.33349.3.1.5.9.3.20
0

HL7 Version 2 root tables Table numbers are used after this OID
as a root

8.5.1.3. Custom Code Systems

OID Concept Set Description

1.3.6.1.4.1.33349.3.1.5.9.3.100.
1

GS1 Stock Codes Stock status codes for GS1

1.3.6.1.4.1.33349.3.1.5.9.3.100.
2

HL7v2 Administrative
Gender

Administrative Gender codes from
HL7v2

